mirror of
				https://github.com/allenai/olmocr.git
				synced 2025-10-31 01:55:06 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			174 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			174 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python3
 | |
| import argparse
 | |
| import json
 | |
| import random
 | |
| import re
 | |
| import time
 | |
| 
 | |
| import boto3
 | |
| import requests
 | |
| from tqdm import tqdm
 | |
| from transformers import AutoTokenizer
 | |
| 
 | |
| # Allowed characters: alphanumeric, space, and basic punctuation ".,!?()"
 | |
| ALLOWED_RE = re.compile(r"^[A-Za-z0-9\.,!?() ]+$")
 | |
| 
 | |
| 
 | |
| def get_random_line_from_s3(bucket, key):
 | |
|     """
 | |
|     Reads an S3 object line-by-line and returns a random line using reservoir sampling.
 | |
|     """
 | |
|     s3 = boto3.client("s3")
 | |
|     response = s3.get_object(Bucket=bucket, Key=key)
 | |
|     random_line = None
 | |
|     count = 0
 | |
|     for line in response["Body"].iter_lines():
 | |
|         if not line:
 | |
|             continue
 | |
|         line_str = line.decode("utf-8")
 | |
|         count += 1
 | |
|         if random.randint(1, count) == 1:
 | |
|             random_line = line_str
 | |
|     return random_line
 | |
| 
 | |
| 
 | |
| def query_infinigram(ngram, index="v4_rpj_llama_s4", retries=3):
 | |
|     """
 | |
|     Sends a count query to the infini-gram API for the given n-gram.
 | |
|     Retries a few times in case of network issues.
 | |
|     """
 | |
|     url = "https://api.infini-gram.io/"
 | |
|     payload = {
 | |
|         "index": index,
 | |
|         "query_type": "count",
 | |
|         "query": ngram,
 | |
|     }
 | |
|     for i in range(retries):
 | |
|         try:
 | |
|             response = requests.post(url, json=payload, timeout=10)
 | |
|             if response.status_code == 200:
 | |
|                 result = response.json()
 | |
|                 if "count" in result:
 | |
|                     return result["count"]
 | |
|         except Exception:  # type: ignore
 | |
|             time.sleep(1)
 | |
|     return 0
 | |
| 
 | |
| 
 | |
| def process_document(doc, tokenizer, ngram_size, num_samples, index="v4_rpj_llama_s4"):
 | |
|     """
 | |
|     Tokenizes the document using the Llama2 tokenizer and samples random n-grams.
 | |
|     Each n-gram is chosen such that:
 | |
|       1. It starts on a word-split boundary (using the offset mapping and a check on the preceding character).
 | |
|       2. Its decoded string contains only alphanumeric characters, spaces, and the punctuation marks ".,!?()".
 | |
| 
 | |
|     Each valid n-gram is then queried using the infini-gram API.
 | |
|     The function returns the document id, the number of matching n-grams (i.e. API count > 0),
 | |
|     the total number of valid n-grams sampled, and a list of tuples (flag, ngram_string).
 | |
|     """
 | |
|     text = doc.get("text", "")
 | |
|     doc_id = doc.get("id", "Unknown")
 | |
|     # Get tokenized representation with offset mapping to determine word boundaries.
 | |
|     tokenized = tokenizer(text, add_special_tokens=False, return_offsets_mapping=True)
 | |
|     token_ids = tokenized["input_ids"]
 | |
|     # offsets = tokenized["offset_mapping"]
 | |
| 
 | |
|     if len(token_ids) < ngram_size:
 | |
|         return doc_id, 0, 0, []
 | |
| 
 | |
|     # Determine valid starting indices based on word-split boundaries.
 | |
|     valid_positions = []
 | |
|     # for i in range(len(token_ids) - ngram_size + 1):
 | |
|     #     start_offset = offsets[i][0]
 | |
|     #     if start_offset == 0 or (start_offset > 0 and text[start_offset - 1] == " "):
 | |
|     #         valid_positions.append(i)
 | |
| 
 | |
|     if not valid_positions:
 | |
|         # Fallback: if no valid positions are found, use all possible positions.
 | |
|         valid_positions = list(range(len(token_ids) - ngram_size + 1))
 | |
| 
 | |
|     valid_ngram_details = []
 | |
|     attempts = 0
 | |
|     max_attempts = num_samples * 10  # Limit to prevent infinite loops.
 | |
|     while len(valid_ngram_details) < num_samples and attempts < max_attempts:
 | |
|         idx = random.choice(valid_positions)
 | |
|         ngram_token_ids = token_ids[idx : idx + ngram_size]
 | |
|         ngram_str = tokenizer.decode(ngram_token_ids, clean_up_tokenization_spaces=True)
 | |
|         # Only accept n-grams that contain only allowed characters.
 | |
|         if ALLOWED_RE.fullmatch(ngram_str) and len(ngram_str.strip()) > ngram_size * 3:
 | |
|             count = query_infinigram(ngram_str, index=index)
 | |
|             flag = "YES" if count > 0 else "NO"
 | |
|             valid_ngram_details.append((flag, ngram_str))
 | |
|         attempts += 1
 | |
| 
 | |
|     match_count = sum(1 for flag, _ in valid_ngram_details if flag == "YES")
 | |
|     sample_count = len(valid_ngram_details)
 | |
|     return doc_id, match_count, sample_count, valid_ngram_details
 | |
| 
 | |
| 
 | |
| def main():
 | |
|     parser = argparse.ArgumentParser(description="Infini-gram n-gram matching script with Llama2 tokenization.")
 | |
|     parser.add_argument("N", type=int, help="Number of random .jsonl files to process")
 | |
|     parser.add_argument("s3_path", type=str, help="S3 path to a prefix containing .jsonl files (e.g., s3://my-bucket/my-prefix/)")
 | |
|     parser.add_argument("--index", type=str, default="v4_dolma-v1_7_llama", help="Infini-gram index to use (default: v4_rpj_llama_s4)")
 | |
|     parser.add_argument("--ngram_size", type=int, default=10, help="Size of the n-gram to sample (default: 10)")
 | |
|     parser.add_argument("--num_ngrams", type=int, default=100, help="Number of random n-grams to sample from each document (default: 100)")
 | |
|     args = parser.parse_args()
 | |
| 
 | |
|     if not args.s3_path.startswith("s3://"):
 | |
|         print("Error: s3_path must start with 's3://'")
 | |
|         return
 | |
|     path_without_scheme = args.s3_path[5:]
 | |
|     parts = path_without_scheme.split("/", 1)
 | |
|     bucket = parts[0]
 | |
|     prefix = parts[1] if len(parts) > 1 else ""
 | |
| 
 | |
|     print("Listing .jsonl files from S3...")
 | |
|     s3 = boto3.client("s3")
 | |
|     response = s3.list_objects_v2(Bucket=bucket, Prefix=prefix)
 | |
|     files = [obj["Key"] for obj in response.get("Contents", []) if obj["Key"].endswith(".jsonl")]
 | |
|     if not files:
 | |
|         print("No .jsonl files found in the given prefix.")
 | |
|         return
 | |
| 
 | |
|     if args.N > len(files):
 | |
|         print(f"Requested {args.N} files, but only found {len(files)}. Processing all available files.")
 | |
|         args.N = len(files)
 | |
|     random_files = random.sample(files, args.N)
 | |
| 
 | |
|     print("Loading Llama2 tokenizer...")
 | |
|     tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
 | |
| 
 | |
|     total_matches = 0
 | |
|     total_ngrams_sampled = 0
 | |
| 
 | |
|     for key in tqdm(random_files, desc="Processing files"):
 | |
|         line = get_random_line_from_s3(bucket, key)
 | |
|         if not line:
 | |
|             print(f"Skipping {key}: No valid lines found.")
 | |
|             continue
 | |
|         try:
 | |
|             doc = json.loads(line)
 | |
|         except Exception as e:
 | |
|             print(f"Error parsing JSON in {key}: {e}")
 | |
|             continue
 | |
|         doc_id, match_count, sample_count, details = process_document(doc, tokenizer, args.ngram_size, args.num_ngrams, index=args.index)
 | |
| 
 | |
|         # Print per-document n-gram summary
 | |
|         print(f"\nDocument ID: {doc_id}")
 | |
|         for flag, ngram in details:
 | |
|             # Print the flag in a fixed-width field (4 characters) followed by the n-gram representation.
 | |
|             print(f"{flag:4} {repr(ngram)}")
 | |
|         percentage = (match_count / sample_count * 100) if sample_count else 0
 | |
|         print(f"Matched n-grams: {match_count}/{sample_count} ({percentage:.2f}%)")
 | |
| 
 | |
|         total_matches += match_count
 | |
|         total_ngrams_sampled += sample_count
 | |
| 
 | |
|     overall_percentage = (total_matches / total_ngrams_sampled * 100) if total_ngrams_sampled else 0
 | |
|     print(f"\nTotal matched n-grams: {total_matches}/{total_ngrams_sampled} ({overall_percentage:.2f}%)")
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     main()
 | 
