olmocr/pdelfin/beakerpipeline.py
2024-11-07 13:26:42 -08:00

209 lines
9.3 KiB
Python

import logging
import argparse
import boto3
import signal
import os
import sys
import time
import subprocess
import atexit
import hashlib
from tqdm import tqdm
from pdelfin.s3_utils import expand_s3_glob, parse_s3_path, download_zstd_csv, upload_zstd_csv, download_directory
# Basic logging setup for now
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logging.basicConfig(level=logging.INFO)
# Quiet logs from pypdf
logging.getLogger("pypdf").setLevel(logging.ERROR)
# Global s3 client for the whole script, feel free to adjust params if you need it
workspace_s3 = boto3.client('s3')
pdf_s3 = boto3.client('s3')
def compute_workgroup_sha1(work_group: list[str]) -> str:
sha1 = hashlib.sha1()
# Ensure consistent ordering by sorting the list
for pdf in sorted(work_group):
sha1.update(pdf.encode('utf-8'))
return sha1.hexdigest()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Manager for running millions of PDFs through a batch inference pipeline')
parser.add_argument('workspace', help='The S3 path where work will be done e.g., s3://bucket/prefix/')
parser.add_argument('--pdfs', help='Path to add pdfs stored in s3 to the workspace, can be a glob path s3://bucket/prefix/*.pdf or path to file containing list of pdf paths', default=None)
parser.add_argument('--target_longest_image_dim', type=int, help='Dimension on longest side to use for rendering the pdf pages', default=1024)
parser.add_argument('--target_anchor_text_len', type=int, help='Maximum amount of anchor text to use (characters)', default=6000)
parser.add_argument('--workspace_profile', help='S3 configuration profile for accessing the workspace', default=None)
parser.add_argument('--pdf_profile', help='S3 configuration profile for accessing the raw pdf documents', default=None)
parser.add_argument('--group_size', type=int, default=20, help='Number of pdfs that will be part of each work item in the work queue.')
parser.add_argument('--workers', type=int, default=10, help='Number of workers to run at a time')
parser.add_argument('--model', help='List of paths where you can find the model to convert this pdf. You can specify several different paths here, and the script will try to use the one which is fastest to access',
default=["weka://oe-data-default/jakep/Qwen_Qwen2-VL-7B-Instruct-e4ecf8-01JAH8GMWHTJ376S2N7ETXRXH4/best_bf16/",
"gs://ai2-oe-data/jakep/experiments/qwen2vl-pdf/v1/models/jakep/Qwen_Qwen2-VL-7B-Instruct-e4ecf8-01JAH8GMWHTJ376S2N7ETXRXH4/checkpoint-9500/bf16/",
"s3://ai2-oe-data/jakep/experiments/qwen2vl-pdf/v1/models/jakep/Qwen_Qwen2-VL-7B-Instruct-e4ecf8-01JAH8GMWHTJ376S2N7ETXRXH4/checkpoint-9500/bf16/"])
parser.add_argument('--model_max_context', type=int, default="8192", help="Maximum context length that the model was fine tuned under")
parser.add_argument('--model_chat_template', type=str, default="qwen2-vl", help="Chat template to pass to sglang server")
args = parser.parse_args()
if args.workspace_profile:
workspace_session = boto3.Session(profile_name=args.workspace_profile)
workspace_s3 = workspace_session.client("s3")
if args.pdf_profile:
pdf_session = boto3.Session(profile_name=args.pdf_profile)
pdf_s3 = pdf_session.client("s3")
index_file_s3_path = os.path.join(args.workspace, "pdf_index_list.csv.zstd")
# Check list of pdfs and that it matches what's in the workspace
if args.pdfs:
if args.pdfs.startswith("s3://"):
logger.info(f"Expanding s3 glob at {args.pdfs}")
all_pdfs = expand_s3_glob(pdf_s3, args.pdfs)
elif os.path.exists(args.pdfs):
logger.info(f"Loading file at {args.pdfs}")
with open(args.pdfs, "r") as f:
all_pdfs = list(filter(None, (line.strip() for line in tqdm(f, desc="Processing PDFs"))))
else:
raise ValueError("pdfs argument needs to be either an s3 glob search path, or a local file contains pdf paths (one per line)")
all_pdfs = set(all_pdfs)
logger.info(f"Found {len(all_pdfs):,} total pdf paths")
existing_lines = download_zstd_csv(workspace_s3, index_file_s3_path)
# Parse existing work items into groups
existing_groups = {}
for line in existing_lines:
if line.strip():
parts = line.strip().split(",")
group_hash = parts[0]
group_pdfs = parts[1:]
existing_groups[group_hash] = group_pdfs
existing_pdf_set = set(pdf for group_pdfs in existing_groups.values() for pdf in group_pdfs)
logger.info(f"Loaded {len(existing_pdf_set):,} existing pdf paths from the workspace")
# Remove existing PDFs from all_pdfs
new_pdfs = all_pdfs - existing_pdf_set
logger.info(f"{len(new_pdfs):,} new pdf paths to add to the workspace")
# Group the new PDFs into chunks of group_size
# TODO: Figure out the group size automatically by sampling a few pdfs, and taking the mean/median number of pages, etc.
new_groups = []
current_group = []
for pdf in sorted(new_pdfs): # Sort for consistency
current_group.append(pdf)
if len(current_group) == args.group_size:
group_hash = compute_workgroup_sha1(current_group)
new_groups.append((group_hash, current_group))
current_group = []
if current_group:
group_hash = compute_workgroup_sha1(current_group)
new_groups.append((group_hash, current_group))
logger.info(f"Created {len(new_groups):,} new work groups")
# Combine existing groups with new groups
combined_groups = existing_groups.copy()
for group_hash, group_pdfs in new_groups:
combined_groups[group_hash] = group_pdfs
# Prepare lines to write back
combined_lines = [",".join([group_hash] + group_pdfs) for group_hash, group_pdfs in combined_groups.items()]
# Upload the combined work items back to S3
if new_groups:
upload_zstd_csv(workspace_s3, index_file_s3_path, combined_lines)
logger.info("Completed adding new PDFs.")
# TODO
# If there is a beaker flag, then your job is to trigger this script with N replicas on beaker
# If not, then your job is to do the actual work
# Download the model from the best place available
model_cache_dir = os.path.join(os.path.expanduser('~'), '.cache', 'pdelfin', 'model')
download_directory(args.model, model_cache_dir)
# Start up the sglang server
sglang_process = subprocess.Popen([
"python3", "-m", "sglang.launch_server",
"--model-path", model_cache_dir,
"--chat-template", args.model_chat_template,
"--context-length", str(args.model_max_context),
])
# Register atexit function and signal handlers to guarantee process termination
def terminate_processes():
print("Terminating child processes...")
sglang_process.terminate()
try:
sglang_process.wait(timeout=30)
except subprocess.TimeoutExpired:
print("Forcing termination of child processes.")
sglang_process.kill()
print("Child processes terminated.")
atexit.register(terminate_processes)
def signal_handler(sig, frame):
terminate_processes()
sys.exit(0)
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
# Read in the work queue from s3
work_queue_lines = download_zstd_csv(workspace_s3, index_file_s3_path)
work_queue = {}
for line in work_queue_lines:
if line.strip():
parts = line.strip().split(",")
group_hash = parts[0]
group_pdfs = parts[1:]
work_queue[group_hash] = group_pdfs
# Read in the done items from the s3 workspace
done_work_items = expand_s3_glob(workspace_s3, f"{args.workspace}/dolma_documents/output_*.jsonl")
done_work_hashes = set()
for item in done_work_items:
filename = os.path.basename(item)
if filename.startswith('output_') and filename.endswith('.jsonl'):
group_hash = filename[len('output_'):-len('.jsonl')]
done_work_hashes.add(group_hash)
remaining_work_hashes = set(work_queue.keys()) - done_work_hashes
remaining_work_queue = {hash: work_queue[hash] for hash in remaining_work_hashes}
logger.info(f"Remaining work items: {len(remaining_work_queue)}")
# TODO
# Spawn up to N workers to do:
# In a loop, take a random work item, read in the pdfs, queue in their requests
# Get results back, retry any failed pages
# Check periodically if that work is done in s3, if so, then abandon this work
# Save results back to s3 workspace output folder
# TODO
# Possible future addon, in beaker, discover other nodes on this same job
# Send them a message when you take a work item off the queue
try:
while True:
time.sleep(1)
if sglang_process.returncode is not None:
logger.error(f"Sglang server exited with code {sglang_process.returncode} exiting.")
except KeyboardInterrupt:
logger.info("Got keyboard interrupt, exiting everything")
sys.exit(1)