olmocr/tests/test_dataloader.py
2025-01-27 18:30:41 +00:00

83 lines
2.8 KiB
Python

import unittest
from torch.utils.data import DataLoader
from tqdm import tqdm
from functools import partial
from transformers import AutoProcessor
from olmocr.train.dataloader import (
build_finetuning_dataset,
extract_openai_batch_response,
load_jsonl_into_ds,
list_dataset_files
)
from olmocr.train.dataprep import batch_prepare_data_for_qwen2_training
class TestBatchQueryResponseDataset(unittest.TestCase):
def testLoadS3(self):
ds = load_jsonl_into_ds("s3://ai2-oe-data/jakep/openai_batch_data_v2/*.jsonl", first_n_files=3)
print(f"Loaded {len(ds)} entries")
print(ds)
print(ds["train"])
def testFinetuningDS(self):
ds = build_finetuning_dataset(
response_glob_path="s3://ai2-oe-data/jakep/pdfdata/openai_batch_done_v5_1_eval/*.json",
)
print(ds)
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
ds = ds.with_transform(partial(batch_prepare_data_for_qwen2_training, processor=processor, target_longest_image_dim=1024, target_anchor_text_len=6000))
print(ds[0])
def testPlotSequenceLengthHistogram(self):
import plotly.express as px
ds = build_finetuning_dataset(
response_glob_path="s3://ai2-oe-data/jakep/pdfdata/openai_batch_done_v5_1_eval/*.json",
)
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
ds = ds.with_transform(partial(batch_prepare_data_for_qwen2_training, processor=processor, target_longest_image_dim=1024, target_anchor_text_len=6000))
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
initial_len = len(ds)
train_dataloader = DataLoader(ds, batch_size=1, num_workers=30, shuffle=False)
max_seen_len = 0
steps = 0
sequence_lengths = [] # List to store sequence lengths
for entry in tqdm(train_dataloader):
num_input_tokens = entry["input_ids"].shape[1]
max_seen_len = max(max_seen_len, num_input_tokens)
sequence_lengths.append(num_input_tokens) # Collecting sequence lengths
if steps % 100 == 0:
print(f"Max input len {max_seen_len}")
steps += 1
# model.forward(**{k: v.to("cuda:0") for (k,v) in entry.items()})
print(f"Max input len {max_seen_len}")
print(f"Total elements before filtering: {initial_len}")
print(f"Total elements after filtering: {steps}")
# Plotting the histogram using Plotly
fig = px.histogram(
sequence_lengths,
nbins=100,
title="Distribution of Input Sequence Lengths",
labels={'value': 'Sequence Length', 'count': 'Frequency'}
)
fig.write_image("sequence_lengths_histogram.png")