mirror of
				https://github.com/allenai/olmocr.git
				synced 2025-11-04 03:56:16 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			60 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			60 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import unittest
 | 
						|
 | 
						|
import pytest
 | 
						|
import requests
 | 
						|
from PIL import Image
 | 
						|
from transformers import (
 | 
						|
    AutoModelForCausalLM,
 | 
						|
    AutoProcessor,
 | 
						|
    AutoTokenizer,
 | 
						|
    GenerationConfig,
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.nonci
 | 
						|
class MolmoProcessorTest(unittest.TestCase):
 | 
						|
    def test_molmo_demo(self):
 | 
						|
        # load the processor
 | 
						|
        processor = AutoProcessor.from_pretrained(
 | 
						|
            "allenai/Molmo-7B-O-0924",
 | 
						|
            trust_remote_code=True,
 | 
						|
            torch_dtype="auto",
 | 
						|
        )
 | 
						|
 | 
						|
        # load the model
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(
 | 
						|
            "allenai/Molmo-7B-O-0924",
 | 
						|
            trust_remote_code=True,
 | 
						|
            torch_dtype="auto",
 | 
						|
        )
 | 
						|
 | 
						|
        device = "cuda:0"
 | 
						|
 | 
						|
        model = model.to(device)
 | 
						|
 | 
						|
        # process the image and text
 | 
						|
        inputs = processor.process(images=[Image.open(requests.get("https://picsum.photos/id/237/536/354", stream=True).raw)], text="Describe this image.")
 | 
						|
 | 
						|
        # move inputs to the correct device and make a batch of size 1
 | 
						|
        inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
 | 
						|
 | 
						|
        print("Raw inputs")
 | 
						|
        print(inputs)
 | 
						|
 | 
						|
        print("\nShapes")
 | 
						|
        # {('input_ids', torch.Size([1, 589])), ('images', torch.Size([1, 5, 576, 588])), ('image_masks', torch.Size([1, 5, 576])), ('image_input_idx', torch.Size([1, 5, 144]))}
 | 
						|
        print({(x, y.shape) for x, y in inputs.items()})
 | 
						|
 | 
						|
        print("\nTokens")
 | 
						|
        print(processor.tokenizer.batch_decode(inputs["input_ids"]))
 | 
						|
 | 
						|
        # generate output; maximum 200 new tokens; stop generation when <|endoftext|> is generated
 | 
						|
        output = model.generate_from_batch(inputs, GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"), tokenizer=processor.tokenizer)
 | 
						|
 | 
						|
        # only get generated tokens; decode them to text
 | 
						|
        generated_tokens = output[0, inputs["input_ids"].size(1) :]
 | 
						|
        generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
 | 
						|
 | 
						|
        # print the generated text
 | 
						|
        print(generated_text)
 |