olmocr/pdelfin/eval/buildelo.py
Jake Poznanski c74e3d1440 ELO stuff
2025-01-16 18:00:12 +00:00

183 lines
6.1 KiB
Python

import argparse
import boto3
import dataclasses
import random
import re
from concurrent.futures import ProcessPoolExecutor, as_completed
import functools
from tqdm import tqdm
from itertools import combinations
from pdelfin.s3_utils import parse_s3_path, expand_s3_glob, get_s3_bytes
from dolma_refine.evaluate.metrics import DocumentEditSimilarity
from dolma_refine.evaluate.segmenters import SpacySegmenter
from dolma_refine.evaluate.aligners import HirschbergAligner
from pdelfin.eval.evalhtml import create_review_html
@dataclasses.dataclass
class Comparison:
pdf_path: str
comparison_a_path: str
comparison_b_path: str
comparison_a_str: str
comparison_b_str: str
alignment: float
@property
def comparison_a_method(self):
return re.search(r'page[0-9]+_(\w+)\.md$', self.comparison_a_path).group(1)
@property
def comparison_b_method(self):
return re.search(r'page[0-9]+_(\w+)\.md$', self.comparison_b_path).group(1)
def process_single_pdf(pdf_path, all_mds, comparisons, segmenter_name="spacy"):
"""Process a single PDF and return its comparisons."""
# Create resources inside the worker process
s3_client = boto3.client('s3')
segmenter = SpacySegmenter(segmenter_name)
aligner = HirschbergAligner(match_score=1,
mismatch_score=-1,
indel_score=-1)
comparer = DocumentEditSimilarity(segmenter=segmenter, aligner=aligner)
pdf_comps = []
result_comps = []
# Get all comparison files for this PDF
for comp in comparisons:
comp_path = pdf_path.replace(".pdf", f"_{comp}.md")
if comp_path in all_mds:
pdf_comps.append(comp_path)
# Generate all possible combinations
for (compa, compb) in combinations(pdf_comps, 2):
if random.choice([True, False]):
compa, compb = compb, compa
# Get the text content
text_a = get_s3_bytes(s3_client, compa).decode("utf-8")
text_b = get_s3_bytes(s3_client, compb).decode("utf-8")
result_comps.append(
Comparison(
pdf_path=pdf_path,
comparison_a_path=compa,
comparison_b_path=compb,
comparison_a_str=text_a,
comparison_b_str=text_b,
alignment=comparer.compute(text_a, text_b)
)
)
return result_comps
def build_review_page(args, comparisons, index=0):
page_data = []
for comp in comparisons:
page_data.append({
"s3_path": comp.pdf_path,
"page": 1,
"entry_key": comp.pdf_path + "-" + comp.comparison_a_method + "-" + comp.comparison_b_method,
"gold_text": comp.comparison_a_str,
"gold_metadata": comp.comparison_a_method,
"eval_text": comp.comparison_b_str,
"eval_metadata": comp.comparison_b_method,
"alignment": comp.alignment
})
report_name = f"{args.name}{f'_{index}' if args.num_copies > 1 else ''}.html"
create_review_html(page_data, report_name)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Generates comparison voting pages between different pairs of parses for a PDF."
)
parser.add_argument(
'--name',
default="review_page",
help="What name to give to this evaluation/comparison"
)
parser.add_argument(
'--review_size',
default=50,
type=int,
help="Number of entries to show on the generated review page",
)
parser.add_argument(
'--max_workers',
type=int,
default=None,
help="Maximum number of worker processes to use for parallel processing",
)
parser.add_argument(
'--comparisons',
default=["pdelf", "marker", "gotocr_format", "mineru"],
help="Different variants to compare against"
)
parser.add_argument(
'--num_copies',
default=1,
type=int,
help="Number of reports to generate, labeled _0, _1, etc. if greater than 1",
)
parser.add_argument(
's3_path',
type=str,
help='Path to the folder where you keep your data files, expecting to see *.md files in there along with *.png and *.pdf'
)
args = parser.parse_args()
# Create S3 client only for initial file listing
s3_client = boto3.client('s3')
# Get all PDFs and MD files
all_pdfs = set(expand_s3_glob(s3_client, args.s3_path + "/*.pdf"))
all_mds = set(expand_s3_glob(s3_client, args.s3_path + "/*.md"))
all_comps = []
# Create a partial function with all the common arguments
process_pdf = functools.partial(
process_single_pdf,
all_mds=all_mds,
comparisons=args.comparisons
)
# Use ProcessPoolExecutor for parallel processing
with ProcessPoolExecutor(max_workers=args.max_workers) as executor:
# Submit all PDF processing tasks
future_to_pdf = {
executor.submit(process_pdf, pdf_path): pdf_path
for pdf_path in all_pdfs
}
# Process results as they complete using tqdm for progress
for future in tqdm(as_completed(future_to_pdf), total=len(all_pdfs)):
pdf_path = future_to_pdf[future]
try:
pdf_results = future.result()
all_comps.extend(pdf_results)
except Exception as e:
print(f"Error processing {pdf_path}: {str(e)}")
# Remove all results where the alignment is > 0.96 as these are just too similar to be useful
all_comps = [c for c in all_comps if c.alignment < 0.96]
# Shuffle the results
random.shuffle(all_comps)
# Generate the specified number of copies of the report
for i in range(args.num_copies):
start_index = i * args.review_size
end_index = start_index + args.review_size
# Check if there is enough data for the next report
if start_index >= len(all_comps):
print(f"Not enough data to generate report {i}. Stopping early.")
break
build_review_page(args, all_comps[start_index:end_index], index=i)