olmocr/pdelfin/beakerpipeline.py
2024-11-08 09:14:00 -08:00

326 lines
12 KiB
Python

import logging
import argparse
import boto3
import signal
import os
import sys
import time
import subprocess
import atexit
import hashlib
import base64
import asyncio
from tqdm import tqdm
from io import BytesIO
from PIL import Image
from pdelfin.s3_utils import expand_s3_glob, parse_s3_path, download_zstd_csv, upload_zstd_csv, download_directory
from pdelfin.data.renderpdf import render_pdf_to_base64png
from pdelfin.prompts import build_finetuning_prompt, PageResponse
from pdelfin.prompts.anchor import get_anchor_text
from pdelfin.check import check_poppler_version
# Basic logging setup for now
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logging.basicConfig(level=logging.INFO)
# Quiet logs from pypdf
logging.getLogger("pypdf").setLevel(logging.ERROR)
# Global s3 client for the whole script, feel free to adjust params if you need it
workspace_s3 = boto3.client('s3')
pdf_s3 = boto3.client('s3')
def build_page_query(local_pdf_path: str, page: int, target_longest_image_dim: int, target_anchor_text_len: int, image_rotation: int=0) -> dict:
assert image_rotation in [0, 90, 180, 270], "Invalid image rotation provided in build_page_query"
image_base64 = render_pdf_to_base64png(local_pdf_path, page, target_longest_image_dim=target_longest_image_dim)
if image_rotation != 0:
image_bytes = base64.b64decode(image_base64)
with Image.open(BytesIO(image_bytes)) as img:
rotated_img = img.rotate(-image_rotation, expand=True)
# Save the rotated image to a bytes buffer
buffered = BytesIO()
rotated_img.save(buffered, format="PNG")
# Encode the rotated image back to base64
image_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
anchor_text = get_anchor_text(local_pdf_path, page, pdf_engine="pdfreport", target_length=target_anchor_text_len)
return {
"chat_messages": [
{
"role": "user",
"content": [
{"type": "text", "text": build_finetuning_prompt(anchor_text)},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}}
],
}
],
"temperature": 0.8
}
def compute_workgroup_sha1(work_group: list[str]) -> str:
sha1 = hashlib.sha1()
# Ensure consistent ordering by sorting the list
for pdf in sorted(work_group):
sha1.update(pdf.encode('utf-8'))
return sha1.hexdigest()
async def populate_pdf_work_queue(args):
index_file_s3_path = os.path.join(args.workspace, "pdf_index_list.csv.zstd")
if args.pdfs.startswith("s3://"):
logger.info(f"Expanding s3 glob at {args.pdfs}")
all_pdfs = expand_s3_glob(pdf_s3, args.pdfs)
elif os.path.exists(args.pdfs):
logger.info(f"Loading file at {args.pdfs}")
with open(args.pdfs, "r") as f:
all_pdfs = list(filter(None, (line.strip() for line in tqdm(f, desc="Processing PDFs"))))
else:
raise ValueError("pdfs argument needs to be either an s3 glob search path, or a local file contains pdf paths (one per line)")
all_pdfs = set(all_pdfs)
logger.info(f"Found {len(all_pdfs):,} total pdf paths")
existing_lines = download_zstd_csv(workspace_s3, index_file_s3_path)
# Parse existing work items into groups
existing_groups = {}
for line in existing_lines:
if line.strip():
parts = line.strip().split(",")
group_hash = parts[0]
group_pdfs = parts[1:]
existing_groups[group_hash] = group_pdfs
existing_pdf_set = set(pdf for group_pdfs in existing_groups.values() for pdf in group_pdfs)
logger.info(f"Loaded {len(existing_pdf_set):,} existing pdf paths from the workspace")
# Remove existing PDFs from all_pdfs
new_pdfs = all_pdfs - existing_pdf_set
logger.info(f"{len(new_pdfs):,} new pdf paths to add to the workspace")
# Group the new PDFs into chunks of group_size
# TODO: Figure out the group size automatically by sampling a few pdfs, and taking the mean/median number of pages, etc.
new_groups = []
current_group = []
for pdf in sorted(new_pdfs): # Sort for consistency
current_group.append(pdf)
if len(current_group) == args.group_size:
group_hash = compute_workgroup_sha1(current_group)
new_groups.append((group_hash, current_group))
current_group = []
if current_group:
group_hash = compute_workgroup_sha1(current_group)
new_groups.append((group_hash, current_group))
logger.info(f"Created {len(new_groups):,} new work groups")
# Combine existing groups with new groups
combined_groups = existing_groups.copy()
for group_hash, group_pdfs in new_groups:
combined_groups[group_hash] = group_pdfs
# Prepare lines to write back
combined_lines = [",".join([group_hash] + group_pdfs) for group_hash, group_pdfs in combined_groups.items()]
# Upload the combined work items back to S3
if new_groups:
upload_zstd_csv(workspace_s3, index_file_s3_path, combined_lines)
logger.info("Completed adding new PDFs.")
async def load_pdf_work_queue(args) -> asyncio.Queue:
index_file_s3_path = os.path.join(args.workspace, "pdf_index_list.csv.zstd")
output_glob = f"{args.workspace}/dolma_documents/output_*.jsonl"
# Define the two blocking I/O operations
download_task = asyncio.to_thread(download_zstd_csv, workspace_s3, index_file_s3_path)
expand_task = asyncio.to_thread(expand_s3_glob, workspace_s3, output_glob)
# Run both tasks concurrently
work_queue_lines, done_work_items = await asyncio.gather(download_task, expand_task)
# Process the work queue lines
work_queue = {
parts[0]: parts[1:]
for line in work_queue_lines
if (parts := line.strip().split(",")) and line.strip()
}
# Extract done work hashes
done_work_hashes = {
os.path.basename(item)[len('output_'):-len('.jsonl')]
for item in done_work_items
if os.path.basename(item).startswith('output_') and os.path.basename(item).endswith('.jsonl')
}
# Determine remaining work
remaining_work_hashes = set(work_queue) - done_work_hashes
remaining_work_queue = {
hash_: work_queue[hash_]
for hash_ in remaining_work_hashes
}
# Populate the asyncio.Queue with remaining work
queue = asyncio.Queue()
for work, pdfs in remaining_work_queue.items():
await queue.put((work, pdfs))
return queue
async def process_pdf(args, pdf_s3_path):
await asyncio.sleep(1)
return f"pdf: {pdf_s3_path}"
async def worker(args, queue):
while True:
[work_hash, pdfs] = await queue.get()
completed_pdfs = await asyncio.gather(*[process_pdf(args, pdf) for pdf in pdfs])
logger.info(f"Completed {completed_pdfs}")
queue.task_done()
async def sglang_server_task(args):
model_cache_dir = os.path.join(os.path.expanduser('~'), '.cache', 'pdelfin', 'model')
#download_directory(args.model, model_cache_dir)
proc = await asyncio.create_subprocess_exec(
"python3",
"-m", "sglang.launch_server",
"--model-path", model_cache_dir,
"--chat-template", args.model_chat_template,
"--context-length", str(args.model_max_context),
)
await proc.wait()
async def main():
parser = argparse.ArgumentParser(description='Manager for running millions of PDFs through a batch inference pipeline')
parser.add_argument('workspace', help='The S3 path where work will be done e.g., s3://bucket/prefix/')
parser.add_argument('--pdfs', help='Path to add pdfs stored in s3 to the workspace, can be a glob path s3://bucket/prefix/*.pdf or path to file containing list of pdf paths', default=None)
parser.add_argument('--target_longest_image_dim', type=int, help='Dimension on longest side to use for rendering the pdf pages', default=1024)
parser.add_argument('--target_anchor_text_len', type=int, help='Maximum amount of anchor text to use (characters)', default=6000)
parser.add_argument('--workspace_profile', help='S3 configuration profile for accessing the workspace', default=None)
parser.add_argument('--pdf_profile', help='S3 configuration profile for accessing the raw pdf documents', default=None)
parser.add_argument('--group_size', type=int, default=20, help='Number of pdfs that will be part of each work item in the work queue.')
parser.add_argument('--workers', type=int, default=10, help='Number of workers to run at a time')
parser.add_argument('--model', help='List of paths where you can find the model to convert this pdf. You can specify several different paths here, and the script will try to use the one which is fastest to access',
default=["weka://oe-data-default/jakep/Qwen_Qwen2-VL-7B-Instruct-e4ecf8-01JAH8GMWHTJ376S2N7ETXRXH4/best_bf16/",
"gs://ai2-oe-data/jakep/experiments/qwen2vl-pdf/v1/models/jakep/Qwen_Qwen2-VL-7B-Instruct-e4ecf8-01JAH8GMWHTJ376S2N7ETXRXH4/checkpoint-9500/bf16/",
"s3://ai2-oe-data/jakep/experiments/qwen2vl-pdf/v1/models/jakep/Qwen_Qwen2-VL-7B-Instruct-e4ecf8-01JAH8GMWHTJ376S2N7ETXRXH4/checkpoint-9500/bf16/"])
parser.add_argument('--model_max_context', type=int, default="8192", help="Maximum context length that the model was fine tuned under")
parser.add_argument('--model_chat_template', type=str, default="qwen2-vl", help="Chat template to pass to sglang server")
args = parser.parse_args()
if args.workspace_profile:
workspace_session = boto3.Session(profile_name=args.workspace_profile)
workspace_s3 = workspace_session.client("s3")
if args.pdf_profile:
pdf_session = boto3.Session(profile_name=args.pdf_profile)
pdf_s3 = pdf_session.client("s3")
check_poppler_version()
if args.pdfs:
await populate_pdf_work_queue(args)
sglang_server = asyncio.create_task(sglang_server_task(args))
work_queue = await load_pdf_work_queue(args)
logger.info(f"Work queue prepared with {work_queue.qsize()} items")
# Create worker tasks to process the queue concurrently.
worker_tasks = []
for i in range(args.workers):
task = asyncio.create_task(worker(args, work_queue))
worker_tasks.append(task)
# Wait for the queue to be fully processed
await work_queue.join()
# Cancel our worker tasks.
for task in worker_tasks:
task.cancel()
# Wait until all worker tasks are cancelled.
await asyncio.gather(*worker_tasks, return_exceptions=True)
# Wait for server to stop
sglang_server.cancel()
await sglang_server
if __name__ == "__main__":
asyncio.run(main())
# TODO
# If there is a beaker flag, then your job is to trigger this script with N replicas on beaker
# If not, then your job is to do the actual work
# Download the model from the best place available
# Register atexit function and signal handlers to guarantee process termination
# def terminate_processes():
# print("Terminating child processes...")
# sglang_process.terminate()
# try:
# sglang_process.wait(timeout=30)
# except subprocess.TimeoutExpired:
# print("Forcing termination of child processes.")
# sglang_process.kill()
# print("Child processes terminated.")
# atexit.register(terminate_processes)
# def signal_handler(sig, frame):
# terminate_processes()
# sys.exit(0)
# signal.signal(signal.SIGINT, signal_handler)
# signal.signal(signal.SIGTERM, signal_handler)
# logger.info(f"Remaining work items: {len(remaining_work_queue)}")
# TODO
# Spawn up to N workers to do:
# In a loop, take a random work item, read in the pdfs, queue in their requests
# Get results back, retry any failed pages
# Check periodically if that work is done in s3, if so, then abandon this work
# Save results back to s3 workspace output folder
# TODO
# Possible future addon, in beaker, discover other nodes on this same job
# Send them a message when you take a work item off the queue
# try:
# while True:
# time.sleep(1)
# if sglang_process.returncode is not None:
# logger.error(f"Sglang server exited with code {sglang_process.returncode} exiting.")
# except KeyboardInterrupt:
# logger.info("Got keyboard interrupt, exiting everything")
# sys.exit(1)