mirror of
https://github.com/allenai/olmocr.git
synced 2025-08-18 13:52:17 +00:00
2374 lines
94 KiB
Python
2374 lines
94 KiB
Python
import logging
|
|
import math
|
|
from copy import deepcopy
|
|
from dataclasses import fields, dataclass, replace
|
|
from enum import Enum
|
|
from typing import List, Optional, Tuple, Union, Dict, Any, Sequence, Callable, cast, MutableMapping
|
|
|
|
import torch
|
|
from einops import einsum, einops
|
|
from transformers import PreTrainedModel, GenerationConfig
|
|
from transformers.cache_utils import Cache
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast, ModelOutput
|
|
from transformers.models.auto import AutoModelForCausalLM
|
|
from torch import nn
|
|
|
|
from .config_molmo import MolmoConfig
|
|
from torch.nn import functional as F
|
|
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
class BufferCache(dict, MutableMapping[str, torch.Tensor]):
|
|
"""
|
|
Cache for attention biases and other things that would normally be stored as buffers.
|
|
We avoid using buffers because we've run into various issues doing so with FSDP.
|
|
In general it appears the way FSDP handles buffers is not well-defined.
|
|
It doesn't shard them but apparently it does synchronize them across processes, which we want to avoid
|
|
since (A) it isn't necessary, and (B) we sometimes have `-inf` in these biases which might get turned into
|
|
NaNs when they're synchronized due to casting or some other issue.
|
|
"""
|
|
|
|
|
|
class StrEnum(str, Enum):
|
|
def __str__(self) -> str:
|
|
return self.value
|
|
|
|
def __repr__(self) -> str:
|
|
return f"'{str(self)}'"
|
|
|
|
|
|
class ImageProjectType(StrEnum):
|
|
mlp = "mlp"
|
|
mlpx2 = "2mlp"
|
|
linear = "linear"
|
|
|
|
|
|
class ImagePooling2DType(StrEnum):
|
|
attention = "attention"
|
|
attention_meanq = "attention-meanq"
|
|
attention_2wide = "attention_2wide"
|
|
attention_v2 = "attention-v2"
|
|
none = "none"
|
|
stack = "stack"
|
|
|
|
|
|
class ActivationType(StrEnum):
|
|
quick_gelu = "quick_gelu"
|
|
gelu = "gelu"
|
|
gelu_tanh = "gelu_tanh"
|
|
relu = "relu"
|
|
silu = "silu"
|
|
llama_geglu = "llama_geglu"
|
|
llama_geglu_tanh = "llama_geglu_tanh"
|
|
llama_swiglu = "llama_swiglu"
|
|
swiglu = "swiglu"
|
|
|
|
|
|
def ensure_finite_(x: torch.Tensor, check_neg_inf: bool = True, check_pos_inf: bool = False):
|
|
"""
|
|
Modify ``x`` in place to replace ``float("-inf")`` with the minimum value of the dtype when ``check_neg_inf``
|
|
is ``True`` and to replace ``float("inf")`` with the maximum value of the dtype when ``check_pos_inf`` is ``True``.
|
|
"""
|
|
if check_neg_inf:
|
|
x.masked_fill_(x == float("-inf"), torch.finfo(x.dtype).min)
|
|
if check_pos_inf:
|
|
x.masked_fill_(x == float("inf"), torch.finfo(x.dtype).max)
|
|
|
|
|
|
class MolmoConfigurationError(Exception):
|
|
pass
|
|
|
|
|
|
def _non_meta_init_device(config) -> torch.device:
|
|
if config.init_device is not None and config.init_device != "meta":
|
|
return torch.device(config.init_device)
|
|
else:
|
|
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
class RotaryEmbedding(nn.Module):
|
|
"""
|
|
[Rotary positional embeddings (RoPE)](https://arxiv.org/abs/2104.09864).
|
|
"""
|
|
|
|
def __init__(self, config: MolmoConfig, cache: BufferCache):
|
|
super().__init__()
|
|
self.config = config
|
|
self.__cache = cache
|
|
# Warm up cache.
|
|
self.get_rotary_embedding(
|
|
config.max_position_embeddings or config.max_sequence_length,
|
|
_non_meta_init_device(config)
|
|
)
|
|
|
|
def get_rotary_embedding(self, seq_len: int, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
if (
|
|
(pos_sin := self.__cache.get("rope_pos_sin")) is not None
|
|
and (pos_cos := self.__cache.get("rope_pos_cos")) is not None
|
|
and pos_sin.shape[-2] >= seq_len
|
|
and pos_cos.shape[-2] >= seq_len
|
|
):
|
|
if pos_sin.device != device:
|
|
pos_sin = pos_sin.to(device)
|
|
self.__cache["rope_pos_sin"] = pos_sin
|
|
if pos_cos.device != device:
|
|
pos_cos = pos_cos.to(device)
|
|
self.__cache["rope_pos_cos"] = pos_cos
|
|
return pos_sin[:, :, :seq_len, :], pos_cos[:, :, :seq_len, :]
|
|
|
|
with torch.autocast(device.type, enabled=False):
|
|
dim = self.config.d_model // self.config.n_heads
|
|
inv_freq = 1.0 / (self.config.rope_theta ** (torch.arange(0, dim, 2, device=device, dtype=torch.float) / dim))
|
|
seq = torch.arange(seq_len, device=device, dtype=torch.float)
|
|
freqs = torch.einsum("i , j -> i j", seq, inv_freq)
|
|
if self.config.rope_impl == "interleave":
|
|
positions = freqs.repeat_interleave(2, dim=-1)
|
|
else:
|
|
positions = torch.cat((freqs, freqs), dim=-1)
|
|
pos_sin, pos_cos = positions.sin()[None, None, :, :], positions.cos()[None, None, :, :]
|
|
self.__cache["rope_pos_sin"] = pos_sin
|
|
self.__cache["rope_pos_cos"] = pos_cos
|
|
return pos_sin, pos_cos
|
|
|
|
def rotate_half(self, x: torch.Tensor) -> torch.Tensor:
|
|
B, nh, T, hs = x.size()
|
|
x = x.view(B, nh, T, 2, hs // 2)
|
|
x1, x2 = x.unbind(dim=-2)
|
|
return torch.cat((-x2, x1), dim=-1)
|
|
|
|
def rotate_every_two(self, x: torch.Tensor) -> torch.Tensor:
|
|
B, nh, T, hs = x.size()
|
|
x = x.view(B, nh, T, hs // 2, 2)
|
|
x1, x2 = x.unbind(dim=-1)
|
|
x = torch.stack((-x2, x1), dim=-1)
|
|
return x.view(B, nh, T, hs)
|
|
|
|
def apply_rotary_pos_emb(self, pos_sin: torch.Tensor, pos_cos: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
|
if self.config.rope_impl == "interleave":
|
|
return ((t * pos_cos) + (self.rotate_every_two(t) * pos_sin)).to(t.dtype)
|
|
else:
|
|
return ((t * pos_cos) + (self.rotate_half(t) * pos_sin)).to(t.dtype)
|
|
|
|
def forward(
|
|
self,
|
|
q: torch.Tensor,
|
|
k: torch.Tensor,
|
|
position_ids: Optional[torch.Tensor] = None
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
if self.config.rope_full_precision:
|
|
q_, k_ = q.float(), k.float()
|
|
else:
|
|
q_, k_ = q, k
|
|
|
|
with torch.autocast(q.device.type, enabled=False):
|
|
batch_size = q_.shape[0]
|
|
query_len, key_len = q_.shape[-2], k_.shape[-2] # could be different if layer_past not None
|
|
if position_ids is not None:
|
|
freqs_cis_len = (self.config.max_position_embeddings or self.config.max_sequence_length)
|
|
else:
|
|
freqs_cis_len = key_len
|
|
pos_sin, pos_cos = self.get_rotary_embedding(freqs_cis_len, q_.device)
|
|
pos_sin = pos_sin.type_as(q_)
|
|
pos_cos = pos_cos.type_as(q_)
|
|
if position_ids is not None:
|
|
assert query_len == key_len, "Query and key lengths must be equal when using position IDs."
|
|
pos_sin = pos_sin[0, 0][position_ids].view(
|
|
(batch_size, 1, key_len, pos_sin.shape[-1])
|
|
)
|
|
pos_cos = pos_cos[0, 0][position_ids].view(
|
|
(batch_size, 1, key_len, pos_cos.shape[-1])
|
|
)
|
|
q_ = self.apply_rotary_pos_emb(
|
|
pos_sin[:, :, key_len - query_len : key_len, :],
|
|
pos_cos[:, :, key_len - query_len : key_len, :],
|
|
q_,
|
|
)
|
|
k_ = self.apply_rotary_pos_emb(pos_sin, pos_cos, k_)
|
|
return q_.type_as(q), k_.type_as(k)
|
|
|
|
|
|
class MolmoBlock(nn.Module):
|
|
"""
|
|
A base class for transformer block implementations.
|
|
"""
|
|
|
|
def __init__(self, layer_id: int, config: MolmoConfig, cache: BufferCache):
|
|
super().__init__()
|
|
self.layer_id = layer_id
|
|
self.config = config
|
|
self.hidden_size = (
|
|
config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
|
|
)
|
|
self.__cache = cache
|
|
self._activation_checkpoint_fn = None
|
|
|
|
# Dropout.
|
|
self.dropout = Dropout(config.residual_dropout)
|
|
|
|
# Layer norms.
|
|
self.k_norm: Optional[LayerNormBase] = None
|
|
self.q_norm: Optional[LayerNormBase] = None
|
|
if config.attention_layer_norm:
|
|
assert config.effective_n_kv_heads is not None
|
|
self.k_norm = LayerNormBase.build(
|
|
config,
|
|
size=(config.d_model // config.n_heads) * config.effective_n_kv_heads,
|
|
elementwise_affine=config.attention_layer_norm_with_affine,
|
|
)
|
|
self.q_norm = LayerNormBase.build(config, elementwise_affine=config.attention_layer_norm_with_affine)
|
|
|
|
# Make sure QKV clip coefficient is positive, otherwise it's not well-defined.
|
|
if config.clip_qkv is not None:
|
|
assert config.clip_qkv > 0
|
|
|
|
# Activation function.
|
|
self.act = Activation.build(config)
|
|
assert (self.act.output_multiplier * self.hidden_size) % 1 == 0
|
|
|
|
# Attention output projection.
|
|
input_dim = config.d_model
|
|
self.attn_out = nn.Linear(
|
|
input_dim, config.d_model,
|
|
bias=config.include_bias,
|
|
device=config.init_device
|
|
)
|
|
|
|
# Feed-forward output projection.
|
|
self.ff_out = nn.Linear(
|
|
int(self.act.output_multiplier * self.hidden_size),
|
|
config.d_model,
|
|
bias=config.include_bias,
|
|
device=config.init_device,
|
|
)
|
|
self.ff_out._is_residual = True # type: ignore
|
|
|
|
# Rotary embeddings.
|
|
if self.config.rope:
|
|
self.rotary_emb = RotaryEmbedding(config, self.__cache)
|
|
|
|
self.flash_attn_func = None
|
|
if config.attention_type == "flash":
|
|
try:
|
|
from flash_attn import flash_attn_func # type: ignore
|
|
|
|
self.flash_attn_func = flash_attn_func
|
|
except ModuleNotFoundError:
|
|
pass
|
|
|
|
def reset_parameters(self):
|
|
if self.k_norm is not None:
|
|
self.k_norm.reset_parameters()
|
|
if self.q_norm is not None:
|
|
self.q_norm.reset_parameters()
|
|
init_weights(
|
|
self.config,
|
|
self.attn_out,
|
|
d=self.config.d_model,
|
|
layer_id=self.layer_id,
|
|
type_of_module=ModuleType.out_module,
|
|
)
|
|
init_weights(
|
|
self.config,
|
|
self.ff_out,
|
|
d=self.ff_out.in_features,
|
|
layer_id=self.layer_id,
|
|
type_of_module=ModuleType.out_module,
|
|
)
|
|
|
|
@classmethod
|
|
def _cast_attn_bias(cls, bias: torch.Tensor, input_dtype: torch.dtype) -> torch.Tensor:
|
|
target_dtype = input_dtype
|
|
# NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
|
|
# `is_autocast_cpu_enabled()` for CPU autocast.
|
|
# See https://github.com/pytorch/pytorch/issues/110966.
|
|
if bias.device.type == "cuda" and torch.is_autocast_enabled():
|
|
target_dtype = torch.get_autocast_gpu_dtype()
|
|
elif bias.device.type == "cpu" and torch.is_autocast_cpu_enabled():
|
|
target_dtype = torch.get_autocast_cpu_dtype()
|
|
if bias.dtype != target_dtype:
|
|
bias = bias.to(target_dtype)
|
|
ensure_finite_(bias, check_neg_inf=True, check_pos_inf=False)
|
|
return bias
|
|
|
|
def _scaled_dot_product_attention(
|
|
self,
|
|
q: torch.Tensor,
|
|
k: torch.Tensor,
|
|
v: torch.Tensor,
|
|
attn_mask: Optional[torch.Tensor] = None,
|
|
dropout_p: float = 0.0,
|
|
response_dropout_p: float = 0.0,
|
|
is_causal: bool = False,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Computes scaled dot product attention on query, key and value tensors, using an optional
|
|
attention mask if passed, and applying dropout if a probability greater than 0.0 is specified.
|
|
"""
|
|
if attn_mask is not None:
|
|
attn_mask = attn_mask.to(q.device)
|
|
|
|
if self.flash_attn_func is not None and attn_mask is None:
|
|
r = self.flash_attn_func(
|
|
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), dropout_p=dropout_p, causal=is_causal
|
|
)
|
|
return r.transpose(1, 2)
|
|
else:
|
|
# torch's sdpa doesn't support GQA, so we're doing this
|
|
assert k.size(1) == v.size(1)
|
|
num_kv_heads = k.size(1)
|
|
num_q_heads = q.size(1)
|
|
if num_q_heads != num_kv_heads:
|
|
assert num_q_heads % num_kv_heads == 0
|
|
k = k.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
|
|
v = v.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
|
|
|
|
return F.scaled_dot_product_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
attn_mask=attn_mask,
|
|
dropout_p=dropout_p,
|
|
is_causal=is_causal,
|
|
)
|
|
|
|
def attention(
|
|
self,
|
|
q: torch.Tensor,
|
|
k: torch.Tensor,
|
|
v: torch.Tensor,
|
|
attention_bias: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
use_cache: bool = False,
|
|
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
|
B, T, C = q.size() # batch size, sequence length, d_model
|
|
dtype = k.dtype
|
|
|
|
# Optionally apply layer norm to keys and queries.
|
|
if self.q_norm is not None and self.k_norm is not None:
|
|
q = self.q_norm(q).to(dtype=dtype)
|
|
k = self.k_norm(k).to(dtype=dtype)
|
|
|
|
# Move head forward to be next to the batch dim.
|
|
# shape: (B, nh, T, hs)
|
|
q = q.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2)
|
|
# shape: (B, n_kv_h, T, hs)
|
|
k = k.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
|
|
# shape: (B, n_kv_h, T, hs)
|
|
v = v.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
|
|
|
|
if self.config.use_position_ids and self.config.rope:
|
|
# Apply rotary embeddings
|
|
q, k = self.rotary_emb(q, k, position_ids=position_ids)
|
|
|
|
if layer_past is not None:
|
|
past_key, past_value = layer_past
|
|
k = torch.cat((past_key.to(k.device), k), dim=-2)
|
|
v = torch.cat((past_value.to(v.device), v), dim=-2)
|
|
|
|
present = (k, v) if use_cache else None
|
|
query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None
|
|
|
|
if not self.config.use_position_ids and self.config.rope:
|
|
# Apply rotary embeddings
|
|
q, k = self.rotary_emb(q, k)
|
|
|
|
if attention_bias is not None:
|
|
# Resize and cast attention bias.
|
|
# The current dtype of the attention bias might not match the dtype that the SDP attn function will
|
|
# run in if AMP is enabled, and this can be a problem if some tokens are masked out due to padding
|
|
# as down-casting the attention bias to the autocast precision will result in -infs, which will
|
|
# cause the SDP attn function to produce NaNs.
|
|
attention_bias = self._cast_attn_bias(
|
|
attention_bias[:, :, key_len - query_len : key_len, :key_len], dtype
|
|
)
|
|
|
|
# Get the attention scores.
|
|
# shape: (B, nh, T, hs)
|
|
att = self._scaled_dot_product_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
attn_mask=attention_bias,
|
|
dropout_p=0.0 if not self.training else self.config.attention_dropout,
|
|
response_dropout_p=0.0 if not self.training else self.config.response_attention_dropout,
|
|
is_causal=attention_bias is None,
|
|
)
|
|
|
|
# Re-assemble all head outputs side-by-side.
|
|
att = att.transpose(1, 2).contiguous().view(B, T, C)
|
|
|
|
# Apply output projection.
|
|
return self.attn_out(att), present
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
attention_bias: Optional[torch.FloatTensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
use_cache: bool = False,
|
|
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
|
raise NotImplementedError
|
|
|
|
@classmethod
|
|
def build(cls, layer_id: int, config: MolmoConfig, cache: BufferCache):
|
|
return MolmoSequentialBlock(layer_id, config, cache)
|
|
|
|
|
|
class MolmoSequentialBlock(MolmoBlock):
|
|
"""
|
|
This is a typical transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
|
|
(plus another skip connection).
|
|
"""
|
|
|
|
def __init__(self, layer_id: int, config: MolmoConfig, cache: BufferCache):
|
|
super().__init__(layer_id, config, cache)
|
|
# Layer norms.
|
|
self.attn_norm = LayerNorm.build(config)
|
|
self.ff_norm = LayerNorm.build(config)
|
|
# Attention input projection. Projects x -> (q, k, v)
|
|
|
|
head_dim = config.d_model // config.n_heads
|
|
self.fused_dims = (
|
|
config.d_model,
|
|
config.effective_n_kv_heads * head_dim,
|
|
config.effective_n_kv_heads * head_dim,
|
|
)
|
|
self.att_proj = nn.Linear(
|
|
config.d_model, sum(self.fused_dims),
|
|
bias=config.include_bias or config.qkv_bias,
|
|
device=config.init_device
|
|
)
|
|
# Feed-forward input projection.
|
|
self.ff_proj = nn.Linear(
|
|
config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device
|
|
)
|
|
|
|
def reset_parameters(self):
|
|
super().reset_parameters()
|
|
self.attn_norm.reset_parameters()
|
|
self.ff_norm.reset_parameters()
|
|
# NOTE: the standard deviation for these weights does not depend on the layer.
|
|
init_weights(
|
|
self.config, self.att_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
|
|
)
|
|
init_weights(
|
|
self.config, self.ff_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
attention_bias: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
use_cache: bool = False,
|
|
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
|
# Get query, key, value projections.
|
|
# shape:
|
|
# - for regular attn q, k, v: (batch_size, seq_len, d_model)
|
|
# - for multi-query attn q: (batch_size, seq_len, d_model)
|
|
# k, v: (batch_size, seq_len, d_model // n_heads)
|
|
# - for group query attn q: (batch_size, seq_len, d_model)
|
|
# k, v: (batch_size, seq_len, d_model // n_kv_heads)
|
|
|
|
if not self.config.norm_after:
|
|
if self._activation_checkpoint_fn is not None:
|
|
atten_in = self._activation_checkpoint_fn(self.attn_norm, x)
|
|
else:
|
|
atten_in = self.attn_norm(x)
|
|
else:
|
|
atten_in = x
|
|
qkv = self.att_proj(atten_in)
|
|
|
|
if self.config.clip_qkv is not None:
|
|
qkv.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
|
|
|
q, k, v = qkv.split(self.fused_dims, dim=-1)
|
|
|
|
# Get attention scores.
|
|
if self._activation_checkpoint_fn is not None:
|
|
att, cache = self._activation_checkpoint_fn( # type: ignore
|
|
self.attention, q, k, v, attention_bias, position_ids=position_ids, layer_past=layer_past, use_cache=use_cache
|
|
)
|
|
else:
|
|
att, cache = self.attention(q, k, v, attention_bias, position_ids=position_ids, layer_past=layer_past, use_cache=use_cache)
|
|
|
|
if self.config.norm_after:
|
|
if self._activation_checkpoint_fn is not None:
|
|
att = self._activation_checkpoint_fn(self.attn_norm, att)
|
|
else:
|
|
att = self.attn_norm(att)
|
|
|
|
# Add attention scores.
|
|
# shape: (B, T, C)
|
|
x = x + self.dropout(att)
|
|
|
|
# Add feed-forward projection.
|
|
# shape: (batch_size, seq_len, d_model)
|
|
og_x = x
|
|
|
|
if not self.config.norm_after:
|
|
if self._activation_checkpoint_fn is not None:
|
|
x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
|
|
else:
|
|
x = self.ff_norm(x)
|
|
|
|
x = self.ff_proj(x)
|
|
if self._activation_checkpoint_fn is not None:
|
|
x = self._activation_checkpoint_fn(self.act, x) # type: ignore
|
|
else:
|
|
x = self.act(x)
|
|
x = self.ff_out(x)
|
|
|
|
if self.config.norm_after:
|
|
if self._activation_checkpoint_fn is not None:
|
|
x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
|
|
else:
|
|
x = self.ff_norm(x)
|
|
|
|
x = self.dropout(x)
|
|
x = og_x + x
|
|
|
|
return x, cache
|
|
|
|
|
|
class Embedding(nn.Module):
|
|
def __init__(
|
|
self,
|
|
num_embeddings: int,
|
|
num_new_embeddings: int,
|
|
features: int,
|
|
device: Union[str, torch.device],
|
|
initializer_range: float = 0.02,
|
|
new_embed_initializer_range: float = 0.02,
|
|
):
|
|
super().__init__()
|
|
self.initializer_range = initializer_range
|
|
self.new_embed_initializer_range = new_embed_initializer_range
|
|
self.embedding = nn.Parameter(
|
|
torch.zeros(num_embeddings, features, device=device),
|
|
)
|
|
self.new_embedding = nn.Parameter(
|
|
torch.zeros(num_new_embeddings, features, device=device),
|
|
)
|
|
|
|
def reset_parameters(self):
|
|
nn.init.normal_(self.embedding, std=self.initializer_range)
|
|
nn.init.normal_(self.new_embedding, std=self.new_embed_initializer_range)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return F.embedding(x, torch.cat([self.embedding, self.new_embedding], dim=0))
|
|
|
|
|
|
class Dropout(nn.Dropout):
|
|
def __init__(
|
|
self,
|
|
p: float = 0.5,
|
|
inplace: bool = False,
|
|
mask_p: float = 0,
|
|
broadcast_dims: Sequence[int] = (),
|
|
):
|
|
super().__init__(p, inplace)
|
|
self.mask_p = mask_p
|
|
self.broadcast_dims = broadcast_dims
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
:param input: A tensor of shape `(batch_size, seq_len, embed_dim)`
|
|
"""
|
|
if self.p == 0.0 and (self.mask_p is None or self.mask_p == 0.0):
|
|
return input
|
|
else:
|
|
if self.p > 0. and len(self.broadcast_dims) > 0 and self.training:
|
|
keep_prob = 1.0 - self.p
|
|
dropout_shape = list(input.shape)
|
|
for dim in self.broadcast_dims:
|
|
dropout_shape[dim] = 1
|
|
keep = input.new_empty(dropout_shape).bernoulli_(keep_prob)
|
|
multiplier = keep.broadcast_to(input.shape)
|
|
multiplier.div_(keep_prob)
|
|
input = input * multiplier
|
|
else:
|
|
return F.dropout(input, self.p, self.training, self.inplace)
|
|
|
|
|
|
@dataclass
|
|
class VisionBackboneConfig:
|
|
image_default_input_size: Tuple[int, int] = (336, 336)
|
|
image_patch_size: int = 14
|
|
image_pos_patch_size: int = 14
|
|
image_emb_dim: int = 1024
|
|
image_num_heads: int = 16
|
|
image_num_key_value_heads: int = 16
|
|
image_num_layers: int = 24
|
|
image_head_dim: int = 64
|
|
image_mlp_dim: int = 4096
|
|
image_mlp_activations: str = "gelu"
|
|
image_dropout_rate: float = 0.0
|
|
image_num_pos: int = 577
|
|
image_norm_eps: float = 1e-5
|
|
attention_dropout: float = 0.0
|
|
residual_dropout: float = 0.0
|
|
initializer_range: float = 0.02
|
|
fsdp_wrap: bool = False
|
|
resize_mode: str = "default"
|
|
|
|
def __post_init__(self):
|
|
self.image_default_input_size = tuple(self.image_default_input_size) # type: ignore[assignment]
|
|
|
|
@property
|
|
def image_num_patch(self):
|
|
h, w = self.image_default_input_size
|
|
return h // self.image_patch_size, w // self.image_patch_size
|
|
|
|
|
|
@dataclass
|
|
class FullMolmoConfig:
|
|
d_model: int = 768
|
|
n_heads: int = 12
|
|
n_kv_heads: Optional[int] = None
|
|
qkv_bias: bool = False
|
|
clip_qkv: Optional[float] = None
|
|
n_layers: int = 12
|
|
mlp_ratio: int = 4
|
|
mlp_hidden_size: Optional[int] = None
|
|
activation_type: str = "swiglu"
|
|
block_group_size: int = 1
|
|
rope: bool = True
|
|
rope_full_precision: bool = True
|
|
rope_theta: float = 10000.
|
|
rope_impl: str = "interleave"
|
|
vision_backbone: Optional[VisionBackboneConfig] = None
|
|
attention_type: str = "sdpa"
|
|
float32_attention: bool = True
|
|
attention_dropout: float = 0.1
|
|
response_attention_dropout: float = 0.0
|
|
multi_query_attention: Optional[bool] = None
|
|
attention_layer_norm: bool = False
|
|
residual_dropout: float = 0.1
|
|
embedding_dropout: float = 0.1
|
|
layer_norm_type: str = "default"
|
|
layer_norm_with_affine: bool = True
|
|
layer_norm_eps: Optional[float] = None
|
|
attention_layer_norm_with_affine: bool = True
|
|
max_sequence_length: int = 1024
|
|
max_position_embeddings: Optional[int] = None
|
|
include_bias: bool = True
|
|
bias_for_layer_norm: Optional[bool] = None
|
|
scale_logits: bool = False
|
|
vocab_size: int = 50257
|
|
embedding_size: Optional[int] = 50304
|
|
additional_vocab_size: Optional[int] = None
|
|
new_embedding_init_range: float = 0.02
|
|
weight_tying: bool = True
|
|
pad_token_id: int = -1
|
|
init_device: Optional[str] = None
|
|
init_std: float = 0.02
|
|
init_cutoff_factor: Optional[float] = None
|
|
norm_after: bool = False
|
|
precision: Optional[str] = None
|
|
image_padding_embed: Optional[str] = None
|
|
vit_layers: Tuple = (-1,)
|
|
image_pooling_h: int = 2
|
|
image_pooling_w: int = 2
|
|
image_pooling_2d: str = "attention"
|
|
image_projector: str = "mlp"
|
|
image_feature_dropout: float = 0.0
|
|
initializer_range: float = 0.02
|
|
normalize_input_embeds: bool = False
|
|
use_position_ids: bool = True
|
|
|
|
@property
|
|
def effective_n_kv_heads(self) -> int:
|
|
if self.n_kv_heads is None:
|
|
if self.multi_query_attention is True:
|
|
return 1
|
|
else:
|
|
return self.n_heads
|
|
else:
|
|
if self.multi_query_attention is None:
|
|
return self.n_kv_heads
|
|
if self.multi_query_attention:
|
|
n_kv_heads_should_be = 1
|
|
else:
|
|
n_kv_heads_should_be = self.n_heads
|
|
if self.n_kv_heads == n_kv_heads_should_be:
|
|
return n_kv_heads_should_be
|
|
else:
|
|
raise MolmoConfigurationError(
|
|
"You can't set `multi_query_attention` and `n_kv_heads` at the same time."
|
|
)
|
|
|
|
@property
|
|
def image_num_patch(self):
|
|
assert self.vision_backbone is not None
|
|
return self.vision_backbone.image_num_patch
|
|
|
|
@property
|
|
def image_patch_size(self):
|
|
assert self.vision_backbone is not None
|
|
return self.visoin_backbone.image_patch_size
|
|
|
|
def llm_patches_per_crop(self):
|
|
h, w = self.image_num_patch
|
|
# Round up in case we need to pad the image features for pooling
|
|
h = (h + self.image_pooling_h - 1) // self.image_pooling_h
|
|
w = (w + self.image_pooling_w - 1) // self.image_pooling_w
|
|
return h, w
|
|
|
|
|
|
def _expand_token(token, batch_size: int):
|
|
return token.view(1, 1, -1).expand(batch_size, -1, -1)
|
|
|
|
|
|
class ViTMLP(nn.Module):
|
|
def __init__(self, config: FullMolmoConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
v_cfg = config.vision_backbone
|
|
|
|
self.w1 = nn.Linear(
|
|
v_cfg.image_emb_dim,
|
|
v_cfg.image_mlp_dim,
|
|
bias=True,
|
|
device=config.init_device,
|
|
)
|
|
# Activation function.
|
|
cfg = deepcopy(config)
|
|
cfg.activation_type = v_cfg.image_mlp_activations
|
|
self.act = Activation.build(cfg)
|
|
self.w2 = nn.Linear(
|
|
v_cfg.image_mlp_dim,
|
|
v_cfg.image_emb_dim,
|
|
bias=True,
|
|
device=config.init_device,
|
|
)
|
|
|
|
def reset_parameters(self):
|
|
v_cfg = self.config.vision_backbone
|
|
nn.init.trunc_normal_(self.w1.weight, std=math.sqrt(1 / v_cfg.image_emb_dim), a=-2.0, b=2.0)
|
|
nn.init.trunc_normal_(self.w2.weight, std=math.sqrt(1 / v_cfg.image_mlp_dim), a=-2.0, b=2.0)
|
|
nn.init.zeros_(self.w1.bias)
|
|
nn.init.zeros_(self.w2.bias)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.w1(x)
|
|
x = self.act(x)
|
|
x = self.w2(x)
|
|
return x
|
|
|
|
|
|
class ResidualAttentionBlock(nn.Module):
|
|
|
|
def __init__(self, config: FullMolmoConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
v_cfg = config.vision_backbone
|
|
self.attention = MultiHeadDotProductAttention(config)
|
|
self.feed_forward = ViTMLP(config)
|
|
self.attention_norm = nn.LayerNorm(
|
|
v_cfg.image_emb_dim,
|
|
eps=v_cfg.image_norm_eps,
|
|
device=config.init_device,
|
|
)
|
|
self.ffn_norm = nn.LayerNorm(
|
|
v_cfg.image_emb_dim,
|
|
eps=v_cfg.image_norm_eps,
|
|
device=config.init_device,
|
|
)
|
|
|
|
def reset_parameters(self):
|
|
self.attention.reset_parameters()
|
|
self.feed_forward.reset_parameters()
|
|
self.attention_norm.reset_parameters()
|
|
self.ffn_norm.reset_parameters()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = x + self.attention(self.attention_norm(x))
|
|
x = x + self.feed_forward(self.ffn_norm(x))
|
|
return x
|
|
|
|
|
|
class BlockCollection(nn.Module):
|
|
|
|
def __init__(self, config: FullMolmoConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.grad_checkpointing: bool = False
|
|
|
|
v_cfg = config.vision_backbone
|
|
self.resblocks = nn.ModuleList([
|
|
ResidualAttentionBlock(config) for _ in range(v_cfg.image_num_layers)
|
|
])
|
|
|
|
def reset_parameters(self):
|
|
for r in self.resblocks:
|
|
r.reset_parameters()
|
|
|
|
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
|
hidden_states = []
|
|
for r in self.resblocks:
|
|
x = r(x)
|
|
hidden_states.append(x)
|
|
return hidden_states
|
|
|
|
|
|
class LayerNormFp32(nn.LayerNorm):
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
orig_type = x.dtype
|
|
x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight.to(torch.float32),
|
|
self.bias.to(torch.float32), self.eps)
|
|
return x.to(orig_type)
|
|
|
|
|
|
class VisionTransformer(nn.Module):
|
|
|
|
def __init__(self, config: FullMolmoConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
v_cfg = config.vision_backbone
|
|
# class embeddings and positional embeddings
|
|
self.scale = v_cfg.image_emb_dim ** -0.5
|
|
self.class_embedding = nn.Parameter(
|
|
torch.zeros(v_cfg.image_emb_dim, device=config.init_device),
|
|
)
|
|
self.num_prefix_tokens: int = 1
|
|
self.positional_embedding = nn.Parameter(
|
|
torch.zeros(v_cfg.image_num_pos, v_cfg.image_emb_dim, device=config.init_device),
|
|
)
|
|
|
|
image_patch_size = v_cfg.image_patch_size
|
|
self.patch_embedding = nn.Linear(
|
|
image_patch_size * image_patch_size * 3,
|
|
v_cfg.image_emb_dim,
|
|
bias=False,
|
|
device=config.init_device,
|
|
)
|
|
|
|
self.pre_ln = LayerNormFp32(
|
|
v_cfg.image_emb_dim,
|
|
eps=v_cfg.image_norm_eps,
|
|
)
|
|
|
|
self.transformer = BlockCollection(config)
|
|
|
|
@torch.jit.ignore
|
|
def set_grad_checkpointing(self, enable=True):
|
|
self.transformer.grad_checkpointing = enable
|
|
|
|
def reset_parameters(self):
|
|
nn.init.normal_(self.class_embedding, std=self.scale)
|
|
nn.init.normal_(self.positional_embedding, std=self.scale)
|
|
nn.init.normal_(self.patch_embedding.weight, std=0.02)
|
|
self.pre_ln.reset_parameters()
|
|
self.transformer.reset_parameters()
|
|
|
|
def add_pos_emb(self, x: torch.Tensor, patch_num: int) -> torch.Tensor:
|
|
cls_emb = self.positional_embedding[0:1]
|
|
pos_emb = self.positional_embedding[1:]
|
|
|
|
pos_emb = pos_emb.reshape(
|
|
(int(math.sqrt(pos_emb.shape[0])), int(math.sqrt(pos_emb.shape[0])), pos_emb.shape[1])
|
|
)
|
|
|
|
(patch_num_0, patch_num_1) = patch_num
|
|
|
|
if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1:
|
|
# Dervied from https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
|
|
# antialias: default True in jax.image.resize
|
|
pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2)
|
|
pos_emb = F.interpolate(
|
|
pos_emb, size=(patch_num_0, patch_num_1), mode="bicubic", align_corners=False, antialias=True,
|
|
)
|
|
pos_emb = pos_emb.permute(0, 2, 3, 1).squeeze(0)
|
|
|
|
pos_emb = pos_emb.reshape(-1, pos_emb.shape[-1])
|
|
x = x + torch.cat([cls_emb[None, :, :], pos_emb[None, :, :]], dim=1).to(x.dtype)
|
|
return x
|
|
|
|
def forward(self, x: torch.Tensor, patch_num: int = None) -> List[torch.Tensor]:
|
|
"""
|
|
: param x: (batch_size, num_patch, n_pixels)
|
|
"""
|
|
if patch_num is None:
|
|
patch_num = self.config.vision_backbone.image_num_patch
|
|
B, N, D = x.shape
|
|
|
|
x = self.patch_embedding(x)
|
|
|
|
# class embeddings and positional embeddings
|
|
x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1)
|
|
x = self.add_pos_emb(x, patch_num)
|
|
|
|
x = self.pre_ln(x)
|
|
|
|
hidden_states = self.transformer(x)
|
|
return hidden_states
|
|
|
|
|
|
class MultiHeadDotProductAttention(nn.Module):
|
|
def __init__(self, config: FullMolmoConfig, use_bias: bool = True, is_vit_layer: Optional[bool] = True):
|
|
super().__init__()
|
|
self.config = config
|
|
self.use_bias = use_bias
|
|
|
|
v_cfg = config.vision_backbone
|
|
self.embed_dim = v_cfg.image_emb_dim
|
|
self.num_heads = v_cfg.image_num_heads
|
|
self.head_dim = v_cfg.image_head_dim
|
|
self.num_key_value_heads = v_cfg.image_num_key_value_heads
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
|
self.initializer_range = v_cfg.initializer_range
|
|
self.is_vit_layer = is_vit_layer
|
|
|
|
nlayers = 1 if (is_vit_layer or config.vit_layers is None) else len(config.vit_layers)
|
|
|
|
self.wq = nn.Linear(
|
|
nlayers * self.embed_dim,
|
|
self.num_heads * self.head_dim,
|
|
bias=use_bias,
|
|
device=config.init_device,
|
|
)
|
|
self.wk = nn.Linear(
|
|
nlayers * self.embed_dim,
|
|
self.num_key_value_heads * self.head_dim,
|
|
bias=use_bias,
|
|
device=config.init_device,
|
|
)
|
|
self.wv = nn.Linear(
|
|
nlayers * self.embed_dim,
|
|
self.num_key_value_heads * self.head_dim,
|
|
bias=use_bias,
|
|
device=config.init_device,
|
|
)
|
|
self.wo = nn.Linear(
|
|
self.num_heads * self.head_dim,
|
|
self.embed_dim,
|
|
bias=use_bias,
|
|
device=config.init_device,
|
|
)
|
|
self.attention_dropout: Optional[Dropout] = None
|
|
if v_cfg.attention_dropout > 0:
|
|
self.attention_dropout = Dropout(v_cfg.attention_dropout, broadcast_dims=(0, 1))
|
|
self.residual_dropout = Dropout(v_cfg.residual_dropout)
|
|
|
|
def reset_parameters(self):
|
|
nn.init.normal_(self.wq.weight, std=self.initializer_range)
|
|
nn.init.normal_(self.wk.weight, std=self.initializer_range)
|
|
nn.init.normal_(self.wv.weight, std=self.initializer_range)
|
|
nn.init.normal_(self.wo.weight, std=self.initializer_range)
|
|
if self.use_bias:
|
|
nn.init.constant_(self.wq.bias, 0)
|
|
nn.init.constant_(self.wk.bias, 0)
|
|
nn.init.constant_(self.wv.bias, 0)
|
|
nn.init.constant_(self.wo.bias, 0)
|
|
|
|
def _split_heads(self, hidden_states, num_heads) -> torch.Tensor:
|
|
return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim))
|
|
|
|
def _merge_heads(self, hidden_states) -> torch.Tensor:
|
|
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
|
|
|
|
def forward(self, inputs_q: torch.Tensor, inputs_kv: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
|
|
if inputs_kv is not None:
|
|
inputs_k = inputs_kv
|
|
inputs_v = inputs_kv
|
|
else:
|
|
inputs_k = inputs_q
|
|
inputs_v = inputs_q
|
|
|
|
xq, xk, xv = self.wq(inputs_q), self.wk(inputs_k), self.wv(inputs_v)
|
|
|
|
xq = self._split_heads(xq, self.num_heads)
|
|
xk = self._split_heads(xk, self.num_key_value_heads)
|
|
xv = self._split_heads(xv, self.num_key_value_heads)
|
|
|
|
if self.num_heads != self.num_key_value_heads:
|
|
xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
|
|
xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
|
|
|
|
og_dtype = xq.dtype
|
|
|
|
if self.config.float32_attention:
|
|
xq = xq.to(torch.float)
|
|
xk = xk.to(torch.float)
|
|
|
|
if self.config.attention_type == "direct":
|
|
attn_weights = torch.einsum("...qhd,...khd->...hqk", xq / math.sqrt(xq.size(-1)), xk)
|
|
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(xq.dtype)
|
|
if self.attention_dropout is not None:
|
|
attn_weights = self.attention_dropout(attn_weights)
|
|
attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights.to(xv.dtype), xv)
|
|
|
|
elif self.config.attention_type == "sdpa":
|
|
if self.config.float32_attention and not torch.is_autocast_enabled():
|
|
xv = xv.to(torch.float32)
|
|
attn_output = F.scaled_dot_product_attention(
|
|
xq.transpose(1, 2).contiguous(),
|
|
xk.transpose(1, 2).contiguous(),
|
|
xv.transpose(1, 2).contiguous(),
|
|
is_causal=False,
|
|
dropout_p=self.config.vision_backbone.attention_dropout
|
|
).transpose(1, 2)
|
|
else:
|
|
raise NotImplementedError(self.config.attention_type)
|
|
attn_output = attn_output.to(og_dtype)
|
|
attn_output = self._merge_heads(attn_output)
|
|
attn_output = self.wo(attn_output)
|
|
attn_output = self.residual_dropout(attn_output)
|
|
|
|
return attn_output
|
|
|
|
|
|
class MultiHeadAttentionPool(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: FullMolmoConfig,
|
|
factor: int = 1,
|
|
use_bias: bool = True,
|
|
dropout: bool = True,
|
|
output_layer: bool = True,
|
|
mean_residual: bool = False,
|
|
query: str = "mean",
|
|
is_vit_layer: Optional[bool] = True
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.factor = factor
|
|
self.use_bias = use_bias
|
|
self.dropout = dropout
|
|
self.output_layer = output_layer
|
|
self.mean_residual = mean_residual
|
|
self.query = query
|
|
|
|
v_cfg = config.vision_backbone
|
|
input_dim = v_cfg.image_emb_dim
|
|
self.embed_dim = v_cfg.image_emb_dim * factor
|
|
self.num_heads = v_cfg.image_num_heads
|
|
self.head_dim = v_cfg.image_head_dim * factor
|
|
self.num_key_value_heads = v_cfg.image_num_key_value_heads
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
|
self.initializer_range = v_cfg.initializer_range
|
|
|
|
nlayers = 1 if (is_vit_layer or config.vit_layers is None) else len(config.vit_layers)
|
|
|
|
if query != "vector":
|
|
self.wq = nn.Linear(
|
|
nlayers * input_dim,
|
|
self.num_heads * self.head_dim,
|
|
bias=use_bias,
|
|
device=config.init_device,
|
|
)
|
|
self.wk = nn.Linear(
|
|
nlayers * input_dim,
|
|
self.num_key_value_heads * self.head_dim,
|
|
bias=use_bias,
|
|
device=config.init_device,
|
|
)
|
|
self.wv = nn.Linear(
|
|
nlayers * input_dim,
|
|
self.num_key_value_heads * self.head_dim,
|
|
bias=use_bias,
|
|
device=config.init_device,
|
|
)
|
|
|
|
if query == "vector":
|
|
self.attention_query = nn.Parameter(
|
|
torch.zeros(
|
|
1, self.num_key_value_heads * self.head_dim, device=config.init_device,
|
|
),
|
|
)
|
|
|
|
if output_layer:
|
|
self.wo = nn.Linear(
|
|
self.num_heads * self.head_dim,
|
|
self.embed_dim,
|
|
bias=use_bias,
|
|
device=config.init_device,
|
|
)
|
|
self.attention_dropout = Dropout(v_cfg.attention_dropout, broadcast_dims=(0, 1))
|
|
if dropout:
|
|
self.residual_dropout = Dropout(v_cfg.residual_dropout)
|
|
|
|
def reset_parameters(self):
|
|
if self.query != "vector":
|
|
nn.init.normal_(self.wq.weight, std=self.initializer_range)
|
|
nn.init.normal_(self.wk.weight, std=self.initializer_range)
|
|
nn.init.normal_(self.wv.weight, std=self.initializer_range)
|
|
if self.output_layer:
|
|
nn.init.normal_(self.wo.weight, std=self.initializer_range)
|
|
if self.use_bias:
|
|
if self.query != "vector":
|
|
nn.init.constant_(self.wq.bias, 0)
|
|
nn.init.constant_(self.wk.bias, 0)
|
|
nn.init.constant_(self.wv.bias, 0)
|
|
if self.output_layer:
|
|
nn.init.constant_(self.wo.bias, 0)
|
|
if self.query == "vector":
|
|
nn.init.normal_(self.attention_query, std=self.initializer_range)
|
|
|
|
def _split_heads(self, hidden_states, num_heads):
|
|
return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim))
|
|
|
|
def _merge_heads(self, hidden_states):
|
|
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
|
|
|
|
def forward(self, inputs_kv: torch.Tensor) -> torch.Tensor:
|
|
|
|
xk, xv = self.wk(inputs_kv), self.wv(inputs_kv)
|
|
|
|
if self.query == "mean":
|
|
inputs_q = inputs_kv.mean(dim=1, keepdim=True)
|
|
xq = self.wq(inputs_q)
|
|
elif self.query == "first":
|
|
inputs_q = inputs_kv[:, :1]
|
|
xq = self.wq(inputs_q)
|
|
elif self.query == "vector":
|
|
xq = self.attention_query.expand(inputs_kv.size(0), -1, -1)
|
|
elif self.query == "constant":
|
|
inputs_q = torch.ones_like(inputs_kv[:, :1]) / math.sqrt(inputs_kv.shape[-1])
|
|
xq = self.wq(inputs_q)
|
|
else:
|
|
raise ValueError(f"Unknown query type: {self.query}")
|
|
|
|
xq = self._split_heads(xq, self.num_heads)
|
|
xk = self._split_heads(xk, self.num_key_value_heads)
|
|
xv = self._split_heads(xv, self.num_key_value_heads)
|
|
|
|
if self.num_heads != self.num_key_value_heads:
|
|
xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
|
|
xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
|
|
|
|
xq = xq.to(torch.float)
|
|
xk = xk.to(torch.float)
|
|
|
|
xq = xq / math.sqrt(xq.size(-1))
|
|
attn_weights = torch.einsum("...qhd,...khd->...hqk", xq, xk)
|
|
|
|
attn_weights = F.softmax(attn_weights, dim=-1).to(xq.dtype)
|
|
|
|
attn_weights = self.attention_dropout(attn_weights).to(xv.dtype)
|
|
|
|
attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights, xv)
|
|
attn_output = self._merge_heads(attn_output)
|
|
if self.output_layer:
|
|
attn_output = self.wo(attn_output)
|
|
if self.dropout:
|
|
attn_output = self.residual_dropout(attn_output)
|
|
if self.mean_residual:
|
|
attn_output += inputs_kv.mean(dim=1, keepdim=True)
|
|
|
|
return attn_output
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, config: FullMolmoConfig, input_dim: int, dropout: float = 0.0):
|
|
super().__init__()
|
|
self.config = config
|
|
self.hidden_size = (
|
|
config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
|
|
)
|
|
self.initializer_range = config.initializer_range
|
|
|
|
self.w1 = nn.Linear(
|
|
input_dim,
|
|
self.hidden_size // 2,
|
|
bias=False,
|
|
device=config.init_device,
|
|
)
|
|
self.w2 = nn.Linear(
|
|
self.hidden_size // 2,
|
|
config.d_model,
|
|
bias=False,
|
|
device=config.init_device,
|
|
)
|
|
self.w3 = nn.Linear(
|
|
input_dim,
|
|
self.hidden_size // 2,
|
|
bias=False,
|
|
device=config.init_device,
|
|
)
|
|
# Activation function.
|
|
self.act = Activation.build(config)
|
|
self.dropout = Dropout(dropout)
|
|
|
|
def reset_parameters(self):
|
|
nn.init.normal_(self.w1.weight, std=self.initializer_range)
|
|
nn.init.normal_(self.w2.weight, std=self.initializer_range)
|
|
nn.init.normal_(self.w3.weight, std=self.initializer_range)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.w2(self.act(self.w1(x), self.w3(x)))
|
|
x = self.dropout(x)
|
|
return x
|
|
|
|
|
|
class Residual(nn.Module):
|
|
def __init__(self, submodule: nn.Module):
|
|
super().__init__()
|
|
self.submodule = submodule
|
|
|
|
def reset_parameters(self):
|
|
self.submodule.reset_parameters()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return x + self.submodule(x)
|
|
|
|
|
|
class OLMoVisionBackbone(nn.Module):
|
|
def __init__(self, config: FullMolmoConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.image_vit = VisionTransformer(config)
|
|
|
|
input_dim: int = None
|
|
self.image_pooling_2d: nn.Module = None
|
|
if config.image_pooling_2d in {ImagePooling2DType.attention, ImagePooling2DType.attention_meanq}:
|
|
self.image_pooling_2d = MultiHeadDotProductAttention(config, is_vit_layer=False)
|
|
input_dim = config.vision_backbone.image_emb_dim
|
|
elif config.image_pooling_2d == ImagePooling2DType.attention_2wide:
|
|
cfg = deepcopy(config)
|
|
cfg.vision_backbone.image_emb_dim *= 2
|
|
cfg.vision_backbone.image_head_dim *= 2
|
|
self.image_pooling_2d = MultiHeadDotProductAttention(cfg, is_vit_layer=False)
|
|
input_dim = cfg.vision_backbone.image_emb_dim
|
|
elif config.image_pooling_2d == ImagePooling2DType.attention_v2:
|
|
assert config.vit_layers is not None
|
|
use_bias = True
|
|
dropout = True
|
|
output_layer = True
|
|
query = "mean"
|
|
mean_residual = False
|
|
factor = len(config.vit_layers)
|
|
self.image_pooling_2d = MultiHeadAttentionPool(
|
|
config,
|
|
factor=factor,
|
|
use_bias=use_bias,
|
|
dropout=dropout,
|
|
output_layer=output_layer,
|
|
mean_residual=mean_residual,
|
|
query=query,
|
|
is_vit_layer=False,
|
|
)
|
|
input_dim = config.vision_backbone.image_emb_dim * factor
|
|
elif config.image_pooling_2d in [ImagePooling2DType.none, ImagePooling2DType.stack]:
|
|
self.image_pooling_2d = None
|
|
nlayers = 1 if config.vit_layers is None else len(config.vit_layers)
|
|
input_dim = nlayers * config.vision_backbone.image_emb_dim
|
|
else:
|
|
raise NotImplementedError(f"Unknown image pooling 2D method: {config.image_pooling_2d}")
|
|
|
|
self.input_dim = input_dim
|
|
|
|
# `MLP` assume the activation takes two inputs, so it must be a 'llama' version
|
|
if config.activation_type == ActivationType.swiglu:
|
|
mlp_config = replace(config, activation_type=ActivationType.llama_swiglu)
|
|
elif config.activation_type == ActivationType.gelu:
|
|
mlp_config = replace(config, activation_type=ActivationType.llama_geglu)
|
|
else:
|
|
mlp_config = config
|
|
if config.image_projector == ImageProjectType.mlpx2:
|
|
self.image_projector = nn.ModuleList(
|
|
[MLP(mlp_config, input_dim), Residual(MLP(config, input_dim))]
|
|
)
|
|
elif config.image_projector == ImageProjectType.mlp:
|
|
self.image_projector = MLP(mlp_config, input_dim)
|
|
elif config.image_projector == ImageProjectType.linear:
|
|
self.image_projector = nn.Linear(
|
|
input_dim,
|
|
config.d_model,
|
|
bias=False,
|
|
device=config.init_device,
|
|
)
|
|
else:
|
|
raise NotImplementedError(f"Unknown image projector: {config.image_projector}")
|
|
|
|
self.image_feature_dropout = Dropout(config.image_feature_dropout)
|
|
|
|
def reset_parameters(self):
|
|
if self.image_pooling_2d is not None:
|
|
self.image_pooling_2d.reset_parameters()
|
|
if self.config.image_projector == "2mlp":
|
|
for module in self.image_projector:
|
|
module.reset_parameters()
|
|
elif self.config.image_projector == "linear":
|
|
nn.init.xavier_uniform_(self.image_projector.weight)
|
|
else:
|
|
self.image_projector.reset_parameters()
|
|
|
|
def forward(self, images: torch.Tensor, image_masks: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
raise NotImplementedError
|
|
|
|
|
|
class OLMoPretrainedVisionBackbone(OLMoVisionBackbone):
|
|
def __init__(self, config: FullMolmoConfig):
|
|
super().__init__(config)
|
|
v_cfg = self.config.vision_backbone
|
|
self.grad_checkpointing = True
|
|
|
|
self.num_prefix_tokens = self.image_vit.num_prefix_tokens
|
|
assert self.num_prefix_tokens in {0, 1}, "Only 0 or 1 prefix tokens are supported"
|
|
|
|
self.pad_embed = None
|
|
if config.image_padding_embed:
|
|
image_dim = v_cfg.image_emb_dim*len(self.config.vit_layers)
|
|
if config.image_padding_embed in ["pad_embed", "regress"]:
|
|
self.pad_embed = nn.Parameter(
|
|
torch.zeros((image_dim,), device=config.init_device))
|
|
elif config.image_padding_embed == "pad_and_partial_pad":
|
|
self.pad_embed = nn.Parameter(
|
|
torch.zeros((2, image_dim), device=config.init_device))
|
|
else:
|
|
raise ValueError(config.image_padding_embed)
|
|
|
|
def reset_parameters(self):
|
|
super().reset_parameters()
|
|
self.image_vit.reset_parameters()
|
|
|
|
def encode_image(self, images: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
: param images: (batch_size, num_crops, num_patch, n_pixels)
|
|
"""
|
|
cfg = self.config
|
|
v_cfg = self.config.vision_backbone
|
|
B, T, N, D = images.shape
|
|
|
|
mask = ~torch.all(images.view(B * T, N, D) == -1, dim=(1, 2), keepdim=True)
|
|
|
|
# Output all hidden states
|
|
# n_layers x (batch_num_crops, (1+)n_tokens, image_emb_dim)
|
|
images = images.view(B * T, N, D)
|
|
image_features = self.image_vit(images)
|
|
|
|
if cfg.vit_layers is not None:
|
|
features = []
|
|
for layer in cfg.vit_layers:
|
|
features.append(image_features[layer])
|
|
image_features = torch.cat(features, dim=-1)
|
|
else:
|
|
image_features = image_features[-1]
|
|
|
|
cls_embed: torch.Tensor = None
|
|
if self.num_prefix_tokens > 0:
|
|
cls_embed = image_features[:, 0]
|
|
image_features = image_features[:, 1:]
|
|
|
|
image_features = image_features * mask
|
|
image_features = image_features.view(B, T, N, -1)
|
|
|
|
cls_embed = cls_embed.view(B, T, -1) if cls_embed is not None else None
|
|
|
|
return image_features, cls_embed
|
|
|
|
def forward(self, images: torch.Tensor, image_masks: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
cfg = self.config
|
|
|
|
# image_features: (batch_size, num_crops(=num_image), num_patch, nximage_emb_dim)
|
|
batch_size, num_image = images.shape[:2]
|
|
image_features, cls_embed = self.encode_image(images)
|
|
|
|
if cfg.image_padding_embed:
|
|
assert image_masks is not None
|
|
if cfg.image_padding_embed == "pad_embed":
|
|
all_pad = (image_masks == 0).to(dtype=torch.float32)
|
|
pad_embed = self.pad_embed[None, None, None, :]
|
|
image_features = image_features + pad_embed * torch.unsqueeze(all_pad, -1)
|
|
elif cfg.image_padding_embed == "regress":
|
|
pad_embed = self.pad_embed[None, None, None, :]
|
|
image_features = image_features + pad_embed * torch.unsqueeze(torch.maximum(image_masks, torch.zeros_like(image_masks)), -1)
|
|
elif cfg.image_padding_embed == "pad_and_partial_pad":
|
|
pad_embed = self.pad_embed[:, None, None, None, :]
|
|
all_pad = image_masks == 0
|
|
partial_pad = torch.logical_and(image_masks < 1, torch.logical_not(all_pad)).to(dtype=image_features.dtype)
|
|
all_pad = all_pad.to(dtype=image_features.dtype)
|
|
image_features = image_features + pad_embed[0] * torch.unsqueeze(all_pad, -1)
|
|
image_features = image_features + pad_embed[1] * torch.unsqueeze(partial_pad, -1)
|
|
else:
|
|
raise ValueError(cfg.image_padding_embed)
|
|
|
|
image_features = self.image_feature_dropout(image_features)
|
|
if cls_embed is not None:
|
|
cls_embed = self.image_feature_dropout(cls_embed)
|
|
|
|
image_features = image_features.reshape(
|
|
(batch_size, num_image) + cfg.image_num_patch + (-1,),
|
|
)
|
|
|
|
if cfg.image_num_patch[0] % cfg.image_pooling_h == 1:
|
|
# Pad so we can still pool 2x2 patches
|
|
image_features = F.pad(
|
|
image_features,
|
|
(0, 0, 0, 1, 0, 1, 0, 0, 0, 0),
|
|
)
|
|
|
|
# image pooling
|
|
image_features = einops.rearrange(
|
|
image_features,
|
|
'b n (h dh) (w dw) c -> (b n h w) (dh dw) c',
|
|
dh=cfg.image_pooling_h,
|
|
dw=cfg.image_pooling_w,
|
|
)
|
|
|
|
if cfg.image_pooling_2d == ImagePooling2DType.attention_meanq:
|
|
query = image_features.mean(-2, keepdim=True)
|
|
image_features = self.image_pooling_2d(query, image_features)
|
|
elif cfg.image_pooling_2d not in {ImagePooling2DType.none, ImagePooling2DType.stack}:
|
|
if self.grad_checkpointing:
|
|
from torch.utils.checkpoint import checkpoint
|
|
image_features = checkpoint(self.image_pooling_2d, image_features[:, :1, :], image_features, use_reentrant=False)
|
|
else:
|
|
image_features = self.image_pooling_2d(image_features[:, :1, :], image_features)
|
|
|
|
h, w = cfg.llm_patches_per_crop()
|
|
image_features = image_features.reshape(batch_size, num_image, h * w, -1)
|
|
|
|
# MLP layer to map the feature.
|
|
if self.grad_checkpointing:
|
|
from torch.utils.checkpoint import checkpoint
|
|
image_features = checkpoint(self.image_projector, image_features, use_reentrant=False)
|
|
else:
|
|
image_features = self.image_projector(image_features)
|
|
|
|
# image_features: (batch_size, num_image, num_patch, d_model)
|
|
# cls_embed: (batch_size, num_image, d_model)
|
|
return image_features, cls_embed
|
|
|
|
|
|
class ModuleType(str, Enum):
|
|
in_module = "in"
|
|
out_module = "out"
|
|
emb = "emb"
|
|
final_out = "final_out"
|
|
|
|
|
|
def init_weights(
|
|
config: FullMolmoConfig,
|
|
module: Union[nn.Linear, nn.Embedding],
|
|
d: Optional[int] = None,
|
|
layer_id: Optional[int] = None,
|
|
std_factor: float = 1.0,
|
|
type_of_module: Optional[ModuleType] = None,
|
|
) -> None:
|
|
d = d if d is not None else config.d_model
|
|
std = config.init_std * std_factor
|
|
if config.init_cutoff_factor is not None:
|
|
cutoff_value = config.init_cutoff_factor * std
|
|
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-cutoff_value, b=cutoff_value)
|
|
else:
|
|
nn.init.normal_(module.weight, mean=0.0, std=std)
|
|
|
|
|
|
class LlamaSwiGLU(nn.Module):
|
|
def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
|
|
return F.silu(x1) * x2
|
|
|
|
@property
|
|
def output_multiplier(self) -> float:
|
|
return 0.5
|
|
|
|
|
|
class SwiGLU(nn.Module):
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x, gate = x.chunk(2, dim=-1)
|
|
return F.silu(gate) * x
|
|
|
|
@property
|
|
def output_multiplier(self) -> float:
|
|
return 0.5
|
|
|
|
|
|
class Activation(nn.Module):
|
|
def __init__(self, config: FullMolmoConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
raise NotImplementedError
|
|
|
|
@property
|
|
def output_multiplier(self) -> float:
|
|
raise NotImplementedError
|
|
|
|
@classmethod
|
|
def build(cls, config: FullMolmoConfig) -> 'Activation':
|
|
if config.activation_type == "quick_gelu":
|
|
return QuickGELU(config)
|
|
elif config.activation_type == "gelu":
|
|
return cast(Activation, GELU(approximate="none"))
|
|
elif config.activation_type == "gelu_tanh":
|
|
return cast(Activation, GELU(approximate="tanh"))
|
|
elif config.activation_type == "relu":
|
|
return cast(Activation, ReLU(inplace=False))
|
|
elif config.activation_type == "silu":
|
|
return cast(Activation, SiLU(inplace=False))
|
|
# elif config.activation_type == "llama_geglu":
|
|
# return LlamaGEGLU(config)
|
|
# elif config.activation_type == "llama_geglu_tanh":
|
|
# return LlamaGEGLUTanh(config)
|
|
elif config.activation_type == "llama_swiglu":
|
|
return LlamaSwiGLU()
|
|
elif config.activation_type == "swiglu":
|
|
return SwiGLU()
|
|
else:
|
|
raise NotImplementedError(f"Unknown activation: '{config.activation_type}'")
|
|
|
|
|
|
class QuickGELU(Activation):
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return x * torch.sigmoid(1.702 * x)
|
|
|
|
@property
|
|
def output_multiplier(self) -> float:
|
|
return 1.0
|
|
|
|
|
|
class GELU(nn.GELU):
|
|
@property
|
|
def output_multiplier(self) -> float:
|
|
return 1.0
|
|
|
|
|
|
class ReLU(nn.ReLU):
|
|
@property
|
|
def output_multiplier(self) -> float:
|
|
return 1.0
|
|
|
|
|
|
class SiLU(nn.SiLU):
|
|
@property
|
|
def output_multiplier(self) -> float:
|
|
return 1.0
|
|
|
|
|
|
def causal_attention_bias(seq_len: int, device: torch.device) -> torch.FloatTensor:
|
|
att_bias = torch.triu(
|
|
torch.ones(seq_len, seq_len, device=device, dtype=torch.float),
|
|
diagonal=1,
|
|
)
|
|
att_bias.masked_fill_(att_bias == 1, torch.finfo(att_bias.dtype).min)
|
|
return att_bias.view(1, 1, seq_len, seq_len) # type: ignore
|
|
|
|
|
|
def get_causal_attention_bias(cache: BufferCache, seq_len: int, device: torch.device) -> torch.Tensor:
|
|
if (causal_bias := cache.get("causal_attention_bias")) is not None and causal_bias.shape[-1] >= seq_len:
|
|
if causal_bias.device != device:
|
|
causal_bias = causal_bias.to(device)
|
|
cache["causal_attention_bias"] = causal_bias
|
|
return causal_bias
|
|
with torch.autocast(device.type, enabled=False):
|
|
causal_bias = causal_attention_bias(seq_len, device)
|
|
cache["causal_attention_bias"] = causal_bias
|
|
return causal_bias
|
|
|
|
|
|
class LayerNormBase(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: MolmoConfig,
|
|
*,
|
|
size: Optional[int] = None,
|
|
elementwise_affine: Optional[bool] = True,
|
|
eps: float = 1e-05,
|
|
weight_initializer: Optional[Callable] = torch.ones,
|
|
bias_initializer: Optional[Callable] = torch.zeros,
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.eps = self.config.layer_norm_eps or eps
|
|
self.normalized_shape = (size or config.d_model,)
|
|
if elementwise_affine or (elementwise_affine is None and self.config.layer_norm_with_affine):
|
|
self.weight = nn.Parameter(weight_initializer(self.normalized_shape, device=config.init_device))
|
|
use_bias = self.config.bias_for_layer_norm
|
|
if use_bias is None:
|
|
use_bias = self.config.include_bias
|
|
if use_bias:
|
|
self.bias = nn.Parameter(bias_initializer(self.normalized_shape, device=config.init_device))
|
|
else:
|
|
self.register_parameter("bias", None)
|
|
else:
|
|
self.register_parameter("bias", None)
|
|
self.register_parameter("weight", None)
|
|
|
|
@classmethod
|
|
def build(cls, config: FullMolmoConfig, size: Optional[int] = None, **kwargs):
|
|
if config.layer_norm_type == "default":
|
|
return LayerNorm(config, size=size, low_precision=False, **kwargs)
|
|
elif config.layer_norm_type == "low_precision":
|
|
return LayerNorm(config, size=size, low_precision=True, **kwargs)
|
|
elif config.layer_norm_type == "rms":
|
|
return RMSLayerNorm(config, size=size, **kwargs)
|
|
else:
|
|
raise NotImplementedError(f"Unknown LayerNorm type: '{config.layer_norm_type}'")
|
|
|
|
|
|
class RMSLayerNorm(LayerNormBase):
|
|
"""
|
|
RMS layer norm, a simplified :class:`LayerNorm` implementation
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
config: FullMolmoConfig,
|
|
size: Optional[int] = None,
|
|
elementwise_affine: Optional[bool] = None,
|
|
eps: float = 1e-5,
|
|
):
|
|
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
with torch.autocast(enabled=False, device_type=x.device.type):
|
|
og_dtype = x.dtype
|
|
x = x.to(torch.float32)
|
|
variance = x.pow(2).mean(-1, keepdim=True)
|
|
x = x * torch.rsqrt(variance + self.eps)
|
|
x = x.to(og_dtype)
|
|
|
|
if self.weight is not None:
|
|
if self.bias is not None:
|
|
return self.weight * x + self.bias
|
|
else:
|
|
return self.weight * x
|
|
else:
|
|
return x
|
|
|
|
|
|
class LayerNorm(LayerNormBase):
|
|
"""
|
|
The default :class:`LayerNorm` implementation which can optionally run in low precision.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
config: FullMolmoConfig,
|
|
size: Optional[int] = None,
|
|
low_precision: bool = False,
|
|
elementwise_affine: Optional[bool] = None,
|
|
eps: float = 1e-05,
|
|
):
|
|
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
|
|
self.low_precision = low_precision
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
if self.low_precision:
|
|
module_device = x.device
|
|
downcast_x = self._cast_if_autocast_enabled(x)
|
|
downcast_weight = (
|
|
self._cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
|
)
|
|
downcast_bias = self._cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
|
|
with torch.autocast(enabled=False, device_type=module_device.type):
|
|
return F.layer_norm(
|
|
downcast_x, self.normalized_shape, weight=downcast_weight, bias=downcast_bias, eps=self.eps
|
|
)
|
|
else:
|
|
return F.layer_norm(x, self.normalized_shape, weight=self.weight, bias=self.bias, eps=self.eps)
|
|
|
|
|
|
class Molmo(nn.Module):
|
|
def __init__(self, config: FullMolmoConfig, init_params: bool = True):
|
|
super().__init__()
|
|
self.config = config
|
|
self.__cache = BufferCache()
|
|
|
|
# Validate config.
|
|
if self.config.embedding_size is not None and self.config.embedding_size != self.config.vocab_size:
|
|
if self.config.embedding_size < self.config.vocab_size:
|
|
raise MolmoConfigurationError("embedding size should be at least as big as vocab size")
|
|
elif self.config.embedding_size % 128 != 0:
|
|
import warnings
|
|
|
|
warnings.warn(
|
|
"Embedding size is not a multiple of 128! This could hurt throughput performance.", UserWarning
|
|
)
|
|
torch.backends.cuda.enable_flash_sdp(True)
|
|
torch.backends.cuda.enable_mem_efficient_sdp(True) # this is super slow so make sure torch won't use it
|
|
|
|
wte = None
|
|
if self.config.additional_vocab_size is not None:
|
|
wte = Embedding(
|
|
config.embedding_size or config.vocab_size,
|
|
config.additional_vocab_size,
|
|
config.d_model,
|
|
device=config.init_device,
|
|
initializer_range=config.initializer_range,
|
|
new_embed_initializer_range=config.new_embedding_init_range
|
|
)
|
|
else:
|
|
wte=nn.Embedding(
|
|
config.embedding_size or config.vocab_size, config.d_model, device=config.init_device
|
|
)
|
|
|
|
self.transformer = nn.ModuleDict(
|
|
dict(
|
|
wte=wte,
|
|
emb_drop=Dropout(config.embedding_dropout),
|
|
ln_f=LayerNorm.build(config),
|
|
)
|
|
)
|
|
|
|
blocks = [MolmoBlock.build(i, config, self.__cache) for i in range(config.n_layers)]
|
|
if self.config.block_group_size > 1:
|
|
raise NotImplementedError()
|
|
else:
|
|
self.transformer.update({"blocks": nn.ModuleList(blocks)})
|
|
|
|
if not self.config.rope:
|
|
self.transformer.update(
|
|
{"wpe": nn.Embedding(config.max_sequence_length, config.d_model, device=config.init_device)}
|
|
)
|
|
if not config.weight_tying:
|
|
self.transformer.update(
|
|
{
|
|
"ff_out": nn.Linear(
|
|
config.d_model,
|
|
config.embedding_size or config.vocab_size,
|
|
bias=config.include_bias,
|
|
device=config.init_device,
|
|
)
|
|
}
|
|
)
|
|
|
|
self.vision_backbone: Optional[OLMoVisionBackbone] = None
|
|
if config.vision_backbone is not None:
|
|
self.vision_backbone = OLMoPretrainedVisionBackbone(config)
|
|
|
|
self.__num_fwd_flops: Optional[int] = None
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def reset_parameters(self):
|
|
if self.vision_backbone is not None:
|
|
self.vision_backbone.reset_parameters()
|
|
self.reset_non_vision_parameters()
|
|
|
|
def reset_non_vision_parameters(self):
|
|
self.transformer.wte.reset_parameters()
|
|
if hasattr(self.transformer.wte, "new_embedding"):
|
|
nn.init.normal_(self.transformer.wte.new_embedding, std=self.config.new_embedding_init_range)
|
|
|
|
if hasattr(self.transformer, "wpe"):
|
|
nn.init.normal_(self.transformer.wpe, mean=0.0, std=1.0)
|
|
|
|
self.transformer.ln_f.reset_parameters() # type: ignore
|
|
|
|
if hasattr(self.transformer, "ff_out"):
|
|
nn.init.normal_(self.transformer.ff_out, mean=0.0, std=0.02)
|
|
|
|
if self.config.block_group_size == 1:
|
|
for block in self.transformer.blocks:
|
|
block.reset_parameters()
|
|
else:
|
|
for block_group in self.transformer.block_groups:
|
|
block_group.reset_parameters()
|
|
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor,
|
|
input_embeddings: Optional[torch.FloatTensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
attention_bias: Optional[torch.Tensor] = None,
|
|
response_mask: Optional[torch.Tensor] = None,
|
|
images: Optional[torch.Tensor] = None,
|
|
image_masks: Optional[torch.Tensor] = None,
|
|
image_input_idx: Optional[torch.Tensor] = None,
|
|
subsegment_ids: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
past_key_values: Optional[Sequence[Tuple[torch.Tensor, torch.Tensor]]] = None,
|
|
use_cache: bool = False,
|
|
last_logits_only: bool = False,
|
|
output_hidden_states: Optional[bool] = None,
|
|
append_last_valid_logits: Optional[torch.Tensor] = None,
|
|
) -> ModelOutput:
|
|
"""
|
|
:param input_ids: A tensor of shape `(batch_size, seq_len)`.
|
|
:param input_embeddings: A tensor of shape `(batch_size, seq_len, d_model)` with input
|
|
embeddings. When provided, it is treated as the output of the input embedding layer.
|
|
:param attention_mask: A tensor of shape `(batch_size, seq_len)` that indicates
|
|
which input IDs are masked. A `1` value in the mask means that
|
|
the corresponding input ID should *not* be ignored. A `0` means
|
|
that the corresponding input ID is masked.
|
|
|
|
This has the same meaning as the `attention_mask` in HuggingFace's `transformers`
|
|
library.
|
|
:param attention_bias: A tensor of shape `(batch_size, 1, seq_len, seq_len)`,
|
|
`(1, 1, seq_len, seq_len)`, or `(seq_len, seq_len)`. This is used
|
|
to introduce causal or other biases.
|
|
|
|
If the tensor is a bool or byte tensor, a `True` or `1` at `attention_bias[:, :, i, j]`
|
|
indicates that the i-th element in the sequence is allowed to attend to the j-th
|
|
element in the sequence.
|
|
|
|
If the tensor is a float tensor, it will just be added to the attention
|
|
scores before the softmax.
|
|
|
|
The default is causal, which corresponds to a lower-diagonal byte matrix of ones.
|
|
:param response_mask: A tensor of shape `(batch_size, seq_len)` that indicates
|
|
the response mask. A `1` value in the mask means that the corresponding token
|
|
is a response token. A `0` means that the corresponding token is not
|
|
a response token.
|
|
:param past_key_values: Pre-computed keys and values for each attention block.
|
|
Can be used to speed up sequential decoding. The `input_ids` which have
|
|
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
|
:param use_cache: If `True`, return key and value tensors for each block.
|
|
:param last_logits_only: If `True`, only compute the logits for the last token of each sequence.
|
|
This can speed up decoding when you only care about the next token.
|
|
"""
|
|
output_hidden_states = output_hidden_states if output_hidden_states is not None else False
|
|
|
|
if past_key_values:
|
|
assert len(past_key_values) == self.config.n_layers
|
|
|
|
has_image = images is not None
|
|
|
|
assert not (has_image and input_embeddings is not None), "Cannot provide both images and input embeddings."
|
|
assert not (has_image and past_key_values is not None), "Cached key and values should not be used with images."
|
|
|
|
batch_size, seq_len = input_ids.size() if input_embeddings is None else input_embeddings.size()[:2]
|
|
if past_key_values is None:
|
|
past_length = 0
|
|
else:
|
|
past_length = past_key_values[0][0].size(-2)
|
|
|
|
if self.config.use_position_ids and attention_mask is None:
|
|
attention_mask = input_ids != -1
|
|
|
|
if subsegment_ids is not None:
|
|
assert not use_cache, "Subsegment_ids cannot be used with cache."
|
|
subsegment_mask = subsegment_ids.unsqueeze(2) <= subsegment_ids.unsqueeze(1)
|
|
attention_mask = (
|
|
subsegment_mask.to(attention_mask.dtype) *
|
|
attention_mask.unsqueeze(2) *
|
|
attention_mask.unsqueeze(1))
|
|
if position_ids is None:
|
|
raise ValueError(f"Positioned ids must be given if using subsegment_ids")
|
|
else:
|
|
if self.config.use_position_ids and position_ids is None:
|
|
position_ids = torch.clamp(
|
|
torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1,
|
|
min=0,
|
|
).broadcast_to((batch_size, attention_mask.shape[-1]))
|
|
|
|
# Get embeddings of input.
|
|
# shape: (batch_size, seq_len, d_model)
|
|
if input_ids is not None:
|
|
input_ids = input_ids * (input_ids != -1).to(input_ids.dtype)
|
|
x = self.transformer.wte(input_ids) if input_embeddings is None else input_embeddings # type: ignore
|
|
|
|
num_image: Optional[int] = None
|
|
if images is not None:
|
|
# shape: (batch_size, num_image, num_patch, d_model)
|
|
# cls_embed: (batch_size, num_image, d_model)
|
|
image_features, cls_embed = self.vision_backbone(images, image_masks)
|
|
num_image, num_patch = image_features.shape[1:3]
|
|
assert image_input_idx.shape == (batch_size, num_image, num_patch)
|
|
|
|
# inster the image feature into the embedding.
|
|
image_features = image_features.view(batch_size, num_image * num_patch, -1)
|
|
image_input_idx = image_input_idx.view(batch_size, num_image * num_patch)
|
|
|
|
valid = image_input_idx >= 0
|
|
batch_idx = torch.arange(batch_size, device=x.device)
|
|
batch_idx = torch.tile(batch_idx[:, None], [1, image_features.shape[1]])
|
|
|
|
# For hf demo/endpoint
|
|
image_features = image_features.to(x.device)
|
|
|
|
x[batch_idx[valid], image_input_idx[valid]] += image_features[valid]
|
|
|
|
if not self.config.rope:
|
|
# Get positional embeddings.
|
|
# shape: (1, seq_len)
|
|
pos = torch.arange(past_length, past_length + seq_len, dtype=torch.long, device=x.device).unsqueeze(0)
|
|
# shape: (1, seq_len, d_model)
|
|
pos_emb = self.transformer.wpe(pos) # type: ignore
|
|
x = pos_emb + x
|
|
|
|
# Add input + positional embeddings and apply dropout.
|
|
# shape: (batch_size, seq_len, d_model)
|
|
x = self.transformer.emb_drop(x) # type: ignore
|
|
|
|
# normalized
|
|
if self.config.normalize_input_embeds:
|
|
x = x * (self.config.d_model ** 0.5)
|
|
|
|
# Transform the attention mask into what the blocks expect.
|
|
if attention_mask is not None:
|
|
# shape: (batch_size, 1, 1, seq_len)
|
|
if len(attention_mask.shape) == 2:
|
|
attention_mask = attention_mask[:, :past_length + seq_len]
|
|
attention_mask = attention_mask.to(dtype=torch.float).view(batch_size, -1)[:, None, None, :]
|
|
else:
|
|
attention_mask = attention_mask.unsqueeze(1).to(dtype=torch.float)
|
|
attention_mask = (1.0 - attention_mask) * torch.finfo(attention_mask.dtype).min
|
|
|
|
# Merge attention mask with attention bias.
|
|
if (
|
|
attention_bias is not None
|
|
or attention_mask is not None
|
|
# NOTE (epwalsh): we need to initialize the attn bias in order for attn to work properly
|
|
# with key+value cache. Otherwise `F.scaled_dot_product_attention()` doesn't seem to compute
|
|
# scores correctly.
|
|
or past_key_values is not None
|
|
):
|
|
if attention_bias is None:
|
|
attention_bias = get_causal_attention_bias(self.__cache, past_length + seq_len, x.device)
|
|
elif attention_bias.dtype in (torch.int8, torch.bool):
|
|
attention_bias = attention_bias.to(dtype=torch.float)
|
|
attention_bias.masked_fill_(attention_bias == 0.0, torch.finfo(attention_bias.dtype).min)
|
|
|
|
# Transform to the right shape and data type.
|
|
mask_len = seq_len
|
|
if attention_mask is not None:
|
|
mask_len = attention_mask.shape[-1]
|
|
elif past_key_values is not None:
|
|
mask_len = past_key_values[0][0].shape[-2] + seq_len
|
|
attention_bias = attention_bias[:, :, :mask_len, :mask_len].to(dtype=torch.float)
|
|
|
|
# Add in the masking bias.
|
|
if attention_mask is not None:
|
|
attention_bias = attention_bias + attention_mask
|
|
# Might get -infs after adding attention mask, since dtype.min + dtype.min = -inf.
|
|
# `F.scaled_dot_product_attention()` doesn't handle -inf like you'd expect, instead
|
|
# it can produce NaNs.
|
|
ensure_finite_(attention_bias, check_neg_inf=True, check_pos_inf=False)
|
|
|
|
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None
|
|
|
|
# decoder layers
|
|
all_hidden_states = []
|
|
|
|
# Apply blocks one-by-one.
|
|
if self.config.block_group_size == 1:
|
|
for block_idx, block in enumerate(self.transformer.blocks):
|
|
if output_hidden_states:
|
|
# add hidden states
|
|
all_hidden_states.append(x)
|
|
|
|
layer_past = None if past_key_values is None else past_key_values[block_idx]
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
x, cache = self._gradient_checkpointing_func(block, x, attention_bias=attention_bias, position_ids=position_ids, layer_past=layer_past, use_cache=use_cache)
|
|
else:
|
|
x, cache = block(x, attention_bias=attention_bias, position_ids=position_ids, layer_past=layer_past, use_cache=use_cache)
|
|
|
|
if attn_key_values is not None:
|
|
assert cache is not None
|
|
attn_key_values.append(cache)
|
|
else:
|
|
for group_idx, block_group in enumerate(self.transformer.block_groups):
|
|
if output_hidden_states:
|
|
# add hidden states
|
|
all_hidden_states.append(x)
|
|
|
|
layers_past = (
|
|
None
|
|
if past_key_values is None
|
|
else past_key_values[
|
|
group_idx * self.config.block_group_size : (group_idx + 1) * self.config.block_group_size
|
|
]
|
|
)
|
|
x, cache = block_group(
|
|
x, attention_bias=attention_bias, position_ids=position_ids, layers_past=layers_past, use_cache=use_cache
|
|
)
|
|
if attn_key_values is not None:
|
|
assert cache is not None
|
|
attn_key_values.extend(cache)
|
|
|
|
if last_logits_only:
|
|
# shape: (batch_size, 1, d_model)
|
|
if append_last_valid_logits is not None:
|
|
last_valid_output = x[
|
|
torch.arange(x.shape[0], device=x.device), append_last_valid_logits.to(x.device)]
|
|
x = last_valid_output.unsqueeze(1)
|
|
else:
|
|
x = x[:, -1, :].unsqueeze(1)
|
|
|
|
# Apply final layer norm.
|
|
# shape: (batch_size, seq_len or 1, d_model)
|
|
x = self.transformer.ln_f(x) # type: ignore
|
|
if output_hidden_states:
|
|
# add final hidden state post-final-layernorm, following HuggingFace's convention
|
|
all_hidden_states.append(x)
|
|
|
|
# Get logits.
|
|
# shape: (batch_size, seq_len or 1, vocab_size)
|
|
if self.config.weight_tying:
|
|
logits = F.linear(x, self.transformer.wte.weight, None) # type: ignore
|
|
else:
|
|
logits = self.transformer.ff_out(x) # type: ignore
|
|
if self.config.scale_logits:
|
|
logits.mul_(1 / math.sqrt(self.config.d_model))
|
|
|
|
if not last_logits_only and append_last_valid_logits is not None:
|
|
last_valid_logit = logits[
|
|
torch.arange(logits.shape[0], device=logits.device), append_last_valid_logits]
|
|
logits = torch.cat([logits[:, :-1], last_valid_logit[:, None]], dim=1)
|
|
|
|
return ModelOutput(logits=logits, attn_key_values=attn_key_values, hidden_states=tuple(all_hidden_states) if output_hidden_states else None) # type: ignore[arg-type]
|
|
|
|
|
|
class MolmoForCausalLM(PreTrainedModel):
|
|
config_class = MolmoConfig
|
|
supports_gradient_checkpointing = True
|
|
base_model_prefix = "model"
|
|
_no_split_modules = ["MolmoBlock"]
|
|
|
|
def __init__(self, config: MolmoConfig, model: Optional[Molmo] = None, init_params: bool = False):
|
|
super().__init__(config)
|
|
|
|
if not model:
|
|
full_config = FullMolmoConfig(
|
|
image_padding_embed="pad_and_partial_pad",
|
|
image_pooling_2d="attention-meanq",
|
|
attention_layer_norm=config.attention_layer_norm,
|
|
rope_impl="llama",
|
|
vocab_size=config.vocab_size,
|
|
max_sequence_length=config.max_position_embeddings,
|
|
qkv_bias=config.qkv_bias,
|
|
norm_after=config.norm_after,
|
|
embedding_size=config.embedding_size,
|
|
attention_type="sdpa",
|
|
embedding_dropout=0,
|
|
attention_dropout=0,
|
|
residual_dropout=0,
|
|
rope=True,
|
|
weight_tying=False,
|
|
include_bias=False,
|
|
d_model=config.hidden_size,
|
|
mlp_hidden_size=config.intermediate_size,
|
|
n_layers=config.num_hidden_layers,
|
|
additional_vocab_size=128,
|
|
n_heads=config.num_attention_heads,
|
|
n_kv_heads=config.num_key_value_heads,
|
|
rope_theta=config.rope_theta,
|
|
layer_norm_eps=config.layer_norm_eps,
|
|
layer_norm_type=config.layer_norm_type,
|
|
vit_layers=[-2, -9],
|
|
vision_backbone=VisionBackboneConfig(
|
|
image_default_input_size=(336, 336),
|
|
image_patch_size=14,
|
|
image_pos_patch_size=14,
|
|
image_emb_dim=1024,
|
|
image_num_heads=16,
|
|
image_num_key_value_heads=16,
|
|
image_num_layers=23,
|
|
image_head_dim=64,
|
|
image_mlp_dim=4096,
|
|
image_mlp_activations="quick_gelu",
|
|
image_dropout_rate=0.0,
|
|
image_num_pos=577,
|
|
image_norm_eps=1e-5,
|
|
attention_dropout=0.0,
|
|
residual_dropout=0.0,
|
|
initializer_range=0.02,
|
|
)
|
|
)
|
|
self.model = Molmo(full_config, init_params=init_params)
|
|
else:
|
|
self.model = model
|
|
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
attention_bias: Optional[torch.Tensor] = None,
|
|
response_mask: Optional[torch.Tensor] = None,
|
|
images: Optional[torch.Tensor] = None,
|
|
image_masks: Optional[torch.Tensor] = None,
|
|
image_input_idx: Optional[torch.Tensor] = None,
|
|
subsegment_ids: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
loss_masks: Optional[torch.Tensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
last_logits_only: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
append_last_valid_logits: Optional[torch.Tensor] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[
|
|
Cache
|
|
] = None, # This is a hack mitigation of an issue in transformers `4.39.x` https://github.com/huggingface/transformers/issues/29426
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
if use_cache is None:
|
|
use_cache = self.config.use_cache
|
|
|
|
if output_attentions:
|
|
raise ValueError("output_attentions is not yet supported in Molmo")
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
outputs = self.model.forward(
|
|
input_ids=input_ids,
|
|
input_embeddings=inputs_embeds,
|
|
attention_mask=attention_mask,
|
|
attention_bias=attention_bias,
|
|
response_mask=response_mask,
|
|
images=images,
|
|
image_masks=image_masks,
|
|
image_input_idx=image_input_idx,
|
|
subsegment_ids=subsegment_ids,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
use_cache=use_cache,
|
|
last_logits_only=last_logits_only,
|
|
output_hidden_states=output_hidden_states,
|
|
append_last_valid_logits=append_last_valid_logits,
|
|
)
|
|
|
|
logits = outputs.logits
|
|
hidden_states = outputs.hidden_states
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
if loss_masks is not None:
|
|
loss_masks = loss_masks * (loss_masks > 0)
|
|
batch_size_in_tokens = max(loss_masks.sum().item(), 1)
|
|
labels = labels.long()
|
|
labels.masked_fill_(~(loss_masks > 0), -100)
|
|
labels = labels.view(-1)
|
|
logits_for_loss = logits.to(torch.float32).view(-1, logits.size(-1))
|
|
loss_fct = torch.nn.CrossEntropyLoss(ignore_index=-100, reduction='none')
|
|
loss = loss_fct(logits_for_loss, labels)
|
|
loss = loss.view(input_ids.shape[0], -1)
|
|
loss = loss * loss_masks
|
|
loss = loss.sum() / batch_size_in_tokens
|
|
use_zloss = getattr(self.config, "softmax_auxiliary_loss", False)
|
|
if use_zloss:
|
|
z_squared = logits_for_loss.logsumexp(-1).pow(2)
|
|
z_loss = self.config.softmax_auxiliary_loss_scale * z_squared
|
|
z_loss = z_loss.view(input_ids.shape[0], -1)
|
|
z_loss = z_loss * loss_masks
|
|
z_loss = z_loss.sum() / batch_size_in_tokens
|
|
loss += z_loss
|
|
else:
|
|
# Shift so that tokens < n predict n
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
# Flatten the tokens
|
|
loss_fct = torch.nn.CrossEntropyLoss()
|
|
shift_logits = shift_logits.view(-1, self.config.embedding_size)
|
|
shift_labels = shift_labels.view(-1)
|
|
# Enable model parallelism
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
|
loss = loss_fct(shift_logits, shift_labels)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
return CausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=outputs.attn_key_values,
|
|
hidden_states=hidden_states,
|
|
)
|
|
|
|
def can_generate(self) -> bool:
|
|
return True
|
|
|
|
@torch.no_grad()
|
|
def generate_from_batch(
|
|
self,
|
|
batch: Dict[str, Any],
|
|
generation_config: Optional[GenerationConfig] = None,
|
|
**kwargs,
|
|
):
|
|
if generation_config is not None:
|
|
assert generation_config.use_cache
|
|
|
|
images = batch.get("images")
|
|
image_masks = batch.get("image_masks")
|
|
image_input_idx = batch.get("image_input_idx")
|
|
|
|
# Validate inputs.
|
|
input_ids = batch["input_ids"]
|
|
batch_size, seq_len = input_ids.shape
|
|
attention_mask = batch.get("attention_mask", None)
|
|
max_new_tokens = generation_config.max_new_tokens
|
|
assert max_new_tokens is not None
|
|
mask_len = seq_len + max_new_tokens if self.config.use_position_ids else seq_len
|
|
position_ids: Optional[torch.Tensor] = None
|
|
append_last_valid_logits: Optional[torch.Tensor] = None
|
|
if self.config.use_position_ids and attention_mask is None:
|
|
attention_mask = input_ids != -1
|
|
position_ids = torch.clamp(
|
|
torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1,
|
|
min=0
|
|
)
|
|
append_last_valid_logits = attention_mask.long().sum(dim=-1) - 1
|
|
attention_mask = torch.cat(
|
|
[attention_mask, attention_mask.new_ones((batch_size, max_new_tokens))],
|
|
dim=1,
|
|
)
|
|
if attention_mask is not None:
|
|
assert attention_mask.shape == (batch_size, mask_len)
|
|
|
|
out = super().generate(
|
|
batch["input_ids"],
|
|
generation_config,
|
|
attention_mask=attention_mask,
|
|
images=images,
|
|
image_masks=image_masks,
|
|
image_input_idx=image_input_idx,
|
|
position_ids=position_ids,
|
|
append_last_valid_logits=append_last_valid_logits,
|
|
**kwargs,
|
|
)
|
|
|
|
return out
|
|
|
|
def prepare_inputs_for_generation(
|
|
self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs
|
|
):
|
|
if past_key_values:
|
|
# This is because we want the model to only process the last generated token.
|
|
input_ids = input_ids[:, -1:]
|
|
|
|
if self.config.use_position_ids:
|
|
attention_mask = kwargs.get("attention_mask")
|
|
images = kwargs.get("images")
|
|
image_masks = kwargs.get("image_masks")
|
|
image_input_idx = kwargs.get("image_input_idx")
|
|
position_ids = kwargs.get("position_ids")
|
|
append_last_valid_logits = kwargs.get("append_last_valid_logits")
|
|
model_inputs = {
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
"position_ids": position_ids,
|
|
"past_key_values": past_key_values,
|
|
"use_cache": True,
|
|
"last_logits_only": True,
|
|
}
|
|
if past_key_values is None:
|
|
model_inputs["images"] = images
|
|
model_inputs["image_masks"] = image_masks
|
|
model_inputs["image_input_idx"] = image_input_idx
|
|
model_inputs["append_last_valid_logits"] = append_last_valid_logits
|
|
else:
|
|
model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values}
|
|
|
|
model_inputs.update(kwargs)
|
|
model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache)
|
|
return model_inputs
|
|
|
|
def _update_model_kwargs_for_generation(
|
|
self,
|
|
outputs: ModelOutput,
|
|
model_kwargs: Dict[str, Any],
|
|
is_encoder_decoder: bool = False,
|
|
num_new_tokens: int = 1,
|
|
) -> Dict[str, Any]:
|
|
if self.config.use_position_ids:
|
|
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
|
|
if "append_last_valid_logits" in model_kwargs:
|
|
del model_kwargs["append_last_valid_logits"]
|
|
if "images" in model_kwargs:
|
|
del model_kwargs["images"]
|
|
del model_kwargs["image_masks"]
|
|
del model_kwargs["image_input_idx"]
|
|
cache_name, cache = super()._extract_past_from_model_output(outputs)
|
|
model_kwargs[cache_name] = cache
|
|
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens
|
|
return model_kwargs
|
|
|
|
def get_input_embeddings(self) -> torch.nn.Module:
|
|
return self.model.transformer.wte
|
|
|
|
def set_input_embeddings(self, value: torch.nn.Module):
|
|
self.model.transformer.wte = value
|
|
|
|
def get_output_embeddings(self):
|
|
if self.config.weight_tying:
|
|
return self.model.transformer.wte
|
|
else:
|
|
return self.model.transformer.ff_out
|
|
|
|
def set_output_embeddings(self, value: torch.nn.Module):
|
|
if self.config.weight_tying:
|
|
self.model.transformer.wte = value
|
|
else:
|
|
self.model.transformer.ff_out = value
|
|
|
|
def tie_weights(self):
|
|
"""
|
|
This function is intentionally left as a no-op.
|
|
|
|
Weight tying is handled as follows:
|
|
- When the model is initialized, the `ff_out` layer is conditionally defined based on the `weight_tying` configuration.
|
|
See: `if not config.weight_tying: self.transformer.update(...)` in `olmo/model.py`.
|
|
- When computing logits, the `wte` weights are used directly if `weight_tying` is enabled.
|
|
See: `if self.config.weight_tying: logits = F.linear(x, self.transformer.wte.weight, None)` in the `forward` method.
|
|
|
|
Therefore, there is no need to explicitly tie the weights in this function.
|
|
"""
|
|
pass
|
|
|
|
def resize_token_embeddings(
|
|
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
|
|
) -> torch.nn.Embedding:
|
|
"""
|
|
Resizes input token embeddings matrix of the model if `new_num_tokens != config.embedding_size`.
|
|
|
|
Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
|
|
|
|
Arguments:
|
|
new_num_tokens (`int`, *optional*):
|
|
The new number of tokens in the embedding matrix. Increasing the size will add newly initialized
|
|
vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
|
|
returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
|
|
pad_to_multiple_of (`int`, *optional*):
|
|
If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to
|
|
`None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
|
|
|
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
|
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
|
|
details about this, or help on choosing the correct value for resizing, refer to this guide:
|
|
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
|
|
|
|
Return:
|
|
`torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
|
|
|
|
Note:
|
|
This method differs from the base class implementation by resizing the `embedding_size` attribute of the
|
|
model configuration instead of the `vocab_size`. It also includes a warning if the resized `embedding_size`
|
|
is less than the `vocab_size`. In OLMo, `embedding_size` refers to the dimensionality of the model's token
|
|
embeddings, while `vocab_size` refers to the number of unique tokens in the vocabulary.
|
|
"""
|
|
model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
|
if new_num_tokens is None and pad_to_multiple_of is None:
|
|
return model_embeds
|
|
|
|
# Update base model and current model config
|
|
self.config.embedding_size = model_embeds.weight.shape[0]
|
|
self.model.config.embedding_size = model_embeds.weight.shape[0]
|
|
|
|
# Check if the embedding size is less than the vocab size
|
|
if self.config.embedding_size < self.config.vocab_size:
|
|
warning_message = (
|
|
f"Resizing token embeddings to size {self.config.embedding_size}, which is less than the vocab size "
|
|
f"{self.config.vocab_size} defined in the model configuration. Make sure your tokenizer's vocabulary "
|
|
"size is less than or equal to the new token embedding size."
|
|
)
|
|
log.warning(warning_message)
|
|
|
|
# Tie weights again if needed
|
|
self.tie_weights()
|
|
|
|
return model_embeds
|
|
|
|
|
|
# Always register for multi-modal features
|
|
AutoModelForCausalLM.register(MolmoConfig, MolmoForCausalLM) |