58 lines
2.3 KiB
Python
Raw Normal View History

2023-12-15 17:33:54 +08:00
import json
from typing import Dict, List
from knext.operator.op import PromptOp
from knext.operator.spg_record import SPGRecord
class IndicatorNER(PromptOp):
template = """
请从以下文本中提取所有指标并给出指标类型以json格式输出
#####
输出格式:
[{{"XXX": ["XXX", "XXX"]}}, {{"XXX": ["XXX", "XXX"]}}]
#####
文本:
{input}
"""
2023-12-21 17:38:20 +08:00
def build_prompt(self, variables: Dict[str, str]):
2023-12-22 14:11:31 +08:00
return self.template.replace("${input}", variables.get("input"))
2023-12-15 17:33:54 +08:00
def parse_response(
self, response: str
) -> List[SPGRecord]:
2023-12-22 14:11:31 +08:00
# output_list = json.loads(response)
#
# ner_result = []
# # IF hasA
# for output in output_list:
# # {'财政': ['财政收入....}
# for k, v in output.items():
# # '财政', ['财政收入....]
# ner_result.append(SPGRecord("FEL.Indicator", properties={"id": k, "name": k, "hasA": ','.join(v)}))
#
# # ELSE isA
# # TODO 通过属性isA支持
# for output in output_list:
# # {'财政': ['财政收入....}
# for k, v in output.items():
# # '财政', ['财政收入....]
# for _v in v:
# # '财政收入....'
# ner_result.append(SPGRecord("FEL.Indicator", properties={"id": f'{k}-{_v}', "name": _v}))
print("##########IndicatorNER###########")
ner_result = [SPGRecord(spg_type_name="Financial.Indicator", properties={"id": "土地出让收入", "name": "土地出让收入"})]
print(ner_result)
print("##########IndicatorNER###########")
2023-12-15 17:33:54 +08:00
return ner_result
2023-12-22 14:11:31 +08:00
def build_next_variables(
self, variables: Dict[str, str], response: str
2023-12-15 17:33:54 +08:00
) -> List[Dict[str, str]]:
"""
response: "[{'subject': '一般公共预算收入', 'predicate': '包含', 'object': ['税收收入']}, {'subject': '税收收入', 'predicate': '包含', 'object': ['留抵退税']}, {'subject': '政府性基金收入', 'predicate': '包含', 'object': ['土地出让收入', '转移性收入']}, {'subject': '综合财力', 'predicate': '包含', 'object': ['一般公共预算收入', '政府性基金收入']}]"
"""
2023-12-22 14:11:31 +08:00
response = ""
return [{"input": variables["input"], "ner": response}]