2023-10-26 10:34:08 +08:00
|
|
|
# -*- coding: utf-8 -*-
|
2023-11-21 17:33:33 +08:00
|
|
|
# Copyright 2023 Ant Group CO., Ltd.
|
2023-10-26 10:34:08 +08:00
|
|
|
#
|
2023-11-21 17:33:33 +08:00
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
|
|
|
|
# in compliance with the License. You may obtain a copy of the License at
|
2023-10-26 10:34:08 +08:00
|
|
|
#
|
2023-11-21 17:33:33 +08:00
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
2023-10-26 10:34:08 +08:00
|
|
|
#
|
2023-11-21 17:33:33 +08:00
|
|
|
# Unless required by applicable law or agreed to in writing, software distributed under the License
|
|
|
|
# is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
|
|
|
|
# or implied.
|
2023-10-26 10:34:08 +08:00
|
|
|
|
|
|
|
import os
|
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
import jieba
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
from datasets import load_dataset
|
|
|
|
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
|
|
|
|
from rouge_chinese import Rouge
|
|
|
|
from transformers import (
|
|
|
|
AutoConfig,
|
|
|
|
AutoModel,
|
|
|
|
AutoTokenizer,
|
|
|
|
DataCollatorForSeq2Seq,
|
|
|
|
HfArgumentParser,
|
|
|
|
Seq2SeqTrainingArguments,
|
|
|
|
Trainer,
|
|
|
|
)
|
|
|
|
from transformers.trainer import TRAINING_ARGS_NAME
|
|
|
|
|
|
|
|
from arguments import ModelArguments, DataTrainingArguments
|
|
|
|
|
|
|
|
|
|
|
|
class PrefixTrainer(Trainer):
|
|
|
|
def __init__(self, *args, save_changed=False, **kwargs):
|
|
|
|
self.save_changed = save_changed
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
|
|
|
|
def _save(self, output_dir: Optional[str] = None, state_dict=None):
|
|
|
|
# If we are executing this function, we are the process zero, so we don't check for that.
|
|
|
|
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
|
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
|
|
print(f"Saving model checkpoint to {output_dir}")
|
|
|
|
# Save a trained model and configuration using `save_pretrained()`.
|
|
|
|
# They can then be reloaded using `from_pretrained()`
|
|
|
|
|
|
|
|
print("Saving PrefixEncoder")
|
|
|
|
state_dict = self.model.state_dict()
|
|
|
|
filtered_state_dict = {}
|
|
|
|
for k, v in self.model.named_parameters():
|
|
|
|
if v.requires_grad:
|
|
|
|
filtered_state_dict[k] = state_dict[k]
|
|
|
|
self.model.save_pretrained(output_dir, state_dict=filtered_state_dict)
|
|
|
|
if self.tokenizer is not None:
|
|
|
|
self.tokenizer.save_pretrained(output_dir)
|
|
|
|
|
|
|
|
# Good practice: save your training arguments together with the trained model
|
|
|
|
torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
|
|
|
|
|
|
|
|
|
|
|
|
def load_training_dataset(tokenizer, data_args, model_args, training_args):
|
|
|
|
# Load dataset
|
|
|
|
data_files = {}
|
|
|
|
data_files["train"] = data_args.train_file
|
|
|
|
extension = data_args.train_file.split(".")[-1]
|
|
|
|
|
|
|
|
# Preprocess dataset
|
|
|
|
raw_datasets = load_dataset(
|
|
|
|
extension,
|
|
|
|
data_files=data_files,
|
|
|
|
cache_dir=model_args.cache_dir,
|
|
|
|
use_auth_token=True if model_args.use_auth_token else None,
|
|
|
|
)
|
|
|
|
if "train" not in raw_datasets:
|
|
|
|
raise ValueError("--do_train requires a train dataset")
|
|
|
|
train_dataset = raw_datasets["train"]
|
|
|
|
with training_args.main_process_first(desc="train dataset map pre-processing"):
|
|
|
|
return train_dataset.map(
|
|
|
|
preprocess(tokenizer, data_args),
|
|
|
|
batched=True,
|
|
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
|
|
desc="Running tokenizer on train dataset",
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def load_data_collator(tokenizer, model, data_args):
|
2023-11-21 15:17:02 +08:00
|
|
|
label_pad_token_id = (
|
|
|
|
-100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
|
|
|
|
)
|
2023-10-26 10:34:08 +08:00
|
|
|
return DataCollatorForSeq2Seq(
|
|
|
|
tokenizer,
|
|
|
|
model=model,
|
|
|
|
label_pad_token_id=label_pad_token_id,
|
|
|
|
pad_to_multiple_of=None,
|
2023-11-21 15:17:02 +08:00
|
|
|
padding=False,
|
2023-10-26 10:34:08 +08:00
|
|
|
)
|
|
|
|
|
|
|
|
|
2023-11-21 15:17:02 +08:00
|
|
|
def load_trainer(
|
|
|
|
tokenizer, model, train_dataset, data_collator, data_args, training_args
|
|
|
|
):
|
2023-10-26 10:34:08 +08:00
|
|
|
# Override the decoding parameters of Seq2SeqTrainer
|
|
|
|
training_args.generation_max_length = (
|
|
|
|
training_args.generation_max_length
|
|
|
|
if training_args.generation_max_length is not None
|
|
|
|
else data_args.val_max_target_length
|
|
|
|
)
|
|
|
|
training_args.generation_num_beams = (
|
2023-11-21 15:17:02 +08:00
|
|
|
data_args.num_beams
|
|
|
|
if data_args.num_beams is not None
|
|
|
|
else training_args.generation_num_beams
|
2023-10-26 10:34:08 +08:00
|
|
|
)
|
|
|
|
|
|
|
|
# Init PrefixTrainer
|
|
|
|
return PrefixTrainer(
|
|
|
|
model=model,
|
|
|
|
args=training_args,
|
|
|
|
train_dataset=train_dataset,
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
data_collator=data_collator,
|
2023-11-21 15:17:02 +08:00
|
|
|
compute_metrics=compute_metrics(tokenizer, data_args)
|
|
|
|
if training_args.predict_with_generate
|
|
|
|
else None,
|
2023-10-26 10:34:08 +08:00
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def preprocess(tokenizer, data_args):
|
|
|
|
def preprocess_function_train(examples):
|
|
|
|
# Get the column names for input/target.
|
|
|
|
prompt_column = data_args.prompt_column
|
|
|
|
response_column = data_args.response_column
|
|
|
|
|
|
|
|
max_seq_length = data_args.max_source_length + data_args.max_target_length + 1
|
|
|
|
|
|
|
|
model_inputs = {
|
|
|
|
"input_ids": [],
|
|
|
|
"labels": [],
|
|
|
|
}
|
|
|
|
for i in range(len(examples[prompt_column])):
|
|
|
|
if examples[prompt_column][i] and examples[response_column][i]:
|
|
|
|
query, answer = examples[prompt_column][i], examples[response_column][i]
|
|
|
|
|
2023-11-21 15:17:02 +08:00
|
|
|
a_ids = tokenizer.encode(
|
|
|
|
text=str(query),
|
|
|
|
add_special_tokens=True,
|
|
|
|
truncation=True,
|
|
|
|
max_length=data_args.max_source_length,
|
|
|
|
)
|
|
|
|
b_ids = tokenizer.encode(
|
|
|
|
text=str(answer),
|
|
|
|
add_special_tokens=False,
|
|
|
|
truncation=True,
|
|
|
|
max_length=data_args.max_target_length,
|
|
|
|
)
|
2023-10-26 10:34:08 +08:00
|
|
|
|
|
|
|
context_length = len(a_ids)
|
|
|
|
input_ids = a_ids + b_ids + [tokenizer.eos_token_id]
|
2023-11-21 15:17:02 +08:00
|
|
|
labels = (
|
|
|
|
[tokenizer.pad_token_id] * context_length
|
|
|
|
+ b_ids
|
|
|
|
+ [tokenizer.eos_token_id]
|
|
|
|
)
|
2023-10-26 10:34:08 +08:00
|
|
|
|
|
|
|
pad_len = max_seq_length - len(input_ids)
|
|
|
|
input_ids = input_ids + [tokenizer.pad_token_id] * pad_len
|
|
|
|
labels = labels + [tokenizer.pad_token_id] * pad_len
|
|
|
|
if data_args.ignore_pad_token_for_loss:
|
2023-11-21 15:17:02 +08:00
|
|
|
labels = [
|
|
|
|
(l if l != tokenizer.pad_token_id else -100) for l in labels
|
|
|
|
]
|
2023-10-26 10:34:08 +08:00
|
|
|
|
|
|
|
model_inputs["input_ids"].append(input_ids)
|
|
|
|
model_inputs["labels"].append(labels)
|
|
|
|
|
|
|
|
return model_inputs
|
|
|
|
|
|
|
|
return preprocess_function_train
|
|
|
|
|
|
|
|
|
|
|
|
def compute_metrics(tokenizer, data_args):
|
|
|
|
def metrics(eval_preds):
|
|
|
|
preds, labels = eval_preds
|
|
|
|
if isinstance(preds, tuple):
|
|
|
|
preds = preds[0]
|
|
|
|
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
|
|
|
if data_args.ignore_pad_token_for_loss:
|
|
|
|
# Replace -100 in the labels as we can't decode them.
|
|
|
|
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
|
|
|
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
|
|
|
|
2023-11-21 15:17:02 +08:00
|
|
|
score_dict = {"rouge-1": [], "rouge-2": [], "rouge-l": [], "bleu-4": []}
|
2023-10-26 10:34:08 +08:00
|
|
|
for pred, label in zip(decoded_preds, decoded_labels):
|
|
|
|
hypothesis = list(jieba.cut(pred))
|
|
|
|
reference = list(jieba.cut(label))
|
|
|
|
rouge = Rouge()
|
2023-11-21 15:17:02 +08:00
|
|
|
scores = rouge.get_scores(" ".join(hypothesis), " ".join(reference))
|
2023-10-26 10:34:08 +08:00
|
|
|
result = scores[0]
|
|
|
|
|
|
|
|
for k, v in result.items():
|
|
|
|
score_dict[k].append(round(v["f"] * 100, 4))
|
2023-11-21 15:17:02 +08:00
|
|
|
bleu_score = sentence_bleu(
|
|
|
|
[list(label)],
|
|
|
|
list(pred),
|
|
|
|
smoothing_function=SmoothingFunction().method3,
|
|
|
|
)
|
2023-10-26 10:34:08 +08:00
|
|
|
score_dict["bleu-4"].append(round(bleu_score * 100, 4))
|
|
|
|
|
|
|
|
for k, v in score_dict.items():
|
|
|
|
score_dict[k] = float(np.mean(v))
|
|
|
|
return score_dict
|
|
|
|
|
|
|
|
return metrics
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
# Load parameters
|
2023-11-21 15:17:02 +08:00
|
|
|
parser = HfArgumentParser(
|
|
|
|
(ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)
|
|
|
|
)
|
2023-10-26 10:34:08 +08:00
|
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
|
|
|
|
# Load config
|
2023-11-21 15:17:02 +08:00
|
|
|
config = AutoConfig.from_pretrained(
|
|
|
|
model_args.model_name_or_path, trust_remote_code=True
|
|
|
|
)
|
2023-10-26 10:34:08 +08:00
|
|
|
config.pre_seq_len = model_args.pre_seq_len
|
|
|
|
config.prefix_projection = model_args.prefix_projection
|
|
|
|
|
|
|
|
# Load tokenizer
|
2023-11-21 15:17:02 +08:00
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
model_args.model_name_or_path, trust_remote_code=True
|
|
|
|
)
|
2023-10-26 10:34:08 +08:00
|
|
|
|
|
|
|
# Load model for P-tuning v2
|
2023-11-21 15:17:02 +08:00
|
|
|
model = AutoModel.from_pretrained(
|
|
|
|
model_args.model_name_or_path, config=config, trust_remote_code=True
|
|
|
|
)
|
2023-10-26 10:34:08 +08:00
|
|
|
model = model.half()
|
|
|
|
model.transformer.prefix_encoder.float()
|
|
|
|
|
|
|
|
# Load training dataset
|
2023-11-21 15:17:02 +08:00
|
|
|
train_dataset = load_training_dataset(
|
|
|
|
tokenizer, data_args, model_args, training_args
|
|
|
|
)
|
2023-10-26 10:34:08 +08:00
|
|
|
|
|
|
|
# Load data collator
|
|
|
|
data_collator = load_data_collator
|
|
|
|
|
|
|
|
# Load trainer
|
2023-11-21 15:17:02 +08:00
|
|
|
trainer = load_trainer(
|
|
|
|
tokenizer, model, train_dataset, data_collator, data_args, training_args
|
|
|
|
)
|
2023-10-26 10:34:08 +08:00
|
|
|
|
|
|
|
# Training
|
|
|
|
checkpoint = None
|
|
|
|
if training_args.resume_from_checkpoint is not None:
|
|
|
|
checkpoint = training_args.resume_from_checkpoint
|
|
|
|
model.gradient_checkpointing_enable()
|
|
|
|
model.enable_input_require_grads()
|
|
|
|
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
|
|
|
|
|
|
|
# Save model
|
|
|
|
trainer.save_model() # Saves the tokenizer too for easy upload
|
|
|
|
|
|
|
|
# Save metrics
|
|
|
|
metrics = train_result.metrics
|
|
|
|
max_train_samples = (
|
2023-11-21 15:17:02 +08:00
|
|
|
data_args.max_train_samples
|
|
|
|
if data_args.max_train_samples is not None
|
|
|
|
else len(train_dataset)
|
2023-10-26 10:34:08 +08:00
|
|
|
)
|
|
|
|
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
|
|
|
|
trainer.log_metrics("train", metrics)
|
|
|
|
trainer.save_metrics("train", metrics)
|
|
|
|
|
|
|
|
# Save state
|
|
|
|
trainer.save_state()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|