mirror of
https://github.com/OpenSPG/openspg.git
synced 2025-07-28 11:32:37 +00:00
49 lines
2.0 KiB
Python
49 lines
2.0 KiB
Python
from typing import Dict, List
|
||
|
||
from knext.api.operator import ExtractOp
|
||
from knext.models.runtime.vertex import Vertex
|
||
from NN4K.invoker.base import ModelInvoker
|
||
|
||
|
||
class BuiltInOnlineLLMBasedExtractOp(ExtractOp):
|
||
|
||
def __init__(self, params: Dict[str, str] = None):
|
||
"""
|
||
|
||
Args:
|
||
params: {"model_name": "openai", "token": "**"}
|
||
"""
|
||
super().__init__(params)
|
||
self.model = ModelInvoker.from_config(params)
|
||
self.prompt_ops = []
|
||
|
||
def eval(self, record: Dict[str, str]) -> List[Vertex]:
|
||
|
||
# 对于单条数据【record】执行多层抽取
|
||
# 每次抽取都需要执行op.build_prompt()->model.predict()->op.parse_response()流程
|
||
# 且每次抽取后可能得到多条结果,下次抽取需要对多条结果分别进行抽取。
|
||
record_list = [record]
|
||
# 循环所有prompt算子,算子数量决定对单条数据执行几层抽取
|
||
for index, op in enumerate(self.prompt_ops):
|
||
extract_result_list = []
|
||
# record_list可能有多条数据,对多条数据都要进行抽取
|
||
while record_list:
|
||
_record = record_list.pop()
|
||
# 生成完整query
|
||
query = op.build_prompt(_record)
|
||
# 模型预测,生成模型输出结果
|
||
response = self.model.inference(query)
|
||
# response = self.model[op.name]
|
||
# 模型结果的后置处理,可能会拆分成多条数据 List[dict[str, str]]
|
||
result_list = op.parse_response(response)
|
||
# 把输入的record和模型输出的result拼成一个新的dict,作为这次抽取最终结果
|
||
for result in result_list:
|
||
_ = _record.copy()
|
||
_.update(result)
|
||
extract_result_list.append(_)
|
||
# record_list为空时,执行下一层抽取
|
||
if index == len(self.prompt_ops) - 1:
|
||
return extract_result_list
|
||
else:
|
||
record_list.extend(extract_result_list)
|