An **Agent** component fine-tunes the LLM and sets its prompt. From v0.20.5 onwards, an **Agent** component is able to work independently and with the following capabilities:
2. If your Agent involves dataset retrieval, ensure you [have properly configured your target knowledge base(s)](../../dataset/configure_knowledge_base.md).
### 1. Click on an **Agent** component to show its configuration panel
The corresponding configuration panel appears to the right of the canvas. Use this panel to define and fine-tune the **Agent** component's behavior.
### 2. Select your model
Click **Model**, and select a chat model from the dropdown menu.
:::tip NOTE
If no model appears, check if your have added a chat model on the **Model providers** page.
:::
### 3. Update system prompt (Optional)
The system prompt typically defines your model's role. You can either keep the system prompt as is or customize it to override the default.
### 4. Update user prompt
The user prompt typically defines your model's task. You will find the `sys.query` variable auto-populated. Type `/` or click **(x)** to view or add variables.
In this quickstart, we assume your **Agent** component is used standalone (without tools or sub-Agents below), then you may also need to specify retrieved chunks using the `formalized_content` variable:
The **+ Add tools** and **+ Add agent** sections are used *only* when you need to configure your **Agent** component as a planner (with tools or sub-Agents beneath). In this quickstart, we assume your **Agent** component is used standalone (without tools or sub-Agents beneath).
### 6. Choose the next component
When necessary, click the **+** button on the **Agent** component to choose the next component in the worflow from the dropdown list.
## Connect to an MCP server as a client
:::danger IMPORTANT
In this section, we assume your **Agent** will be configured as a planner, with a Tavily tool beneath it.
Update your MCP server's name, URL (including the API key), server type, and other necessary settings. When configured correctly, the available tools will be displayed.
- **Freedom**: A shortcut to **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty** settings, indicating the freedom level of the model. From **Improvise**, **Precise**, to **Balance**, each preset configuration corresponds to a unique combination of **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**.
- **Improvise**: Produces more creative responses.
- **Precise**: (Default) Produces more conservative responses.
- **Balance**: A middle ground between **Improvise** and **Precise**.
- **Temperature**: The randomness level of the model's output.
Defaults to 0.1.
- Lower values lead to more deterministic and predictable outputs.
- Higher values lead to more creative and varied outputs.
- A temperature of zero results in the same output for the same prompt.
- **Top P**: Nucleus sampling.
- Reduces the likelihood of generating repetitive or unnatural text by setting a threshold *P* and restricting the sampling to tokens with a cumulative probability exceeding *P*.
- Defaults to 0.3.
- **Presence penalty**: Encourages the model to include a more diverse range of tokens in the response.
- A higher **presence penalty** value results in the model being more likely to generate tokens not yet been included in the generated text.
- Defaults to 0.4.
- **Frequency penalty**: Discourages the model from repeating the same words or phrases too frequently in the generated text.
- A higher **frequency penalty** value results in the model being more conservative in its use of repeated tokens.
- It is not necessary to stick with the same model for all components. If a specific model is not performing well for a particular task, consider using a different one.
- If you are uncertain about the mechanism behind **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**, simply choose one of the three options of **Preset configurations**.
Typically, you use the system prompt to describe the task for the LLM, specify how it should respond, and outline other miscellaneous requirements. We do not plan to elaborate on this topic, as it can be as extensive as prompt engineering. However, please be aware that the system prompt is often used in conjunction with keys (variables), which serve as various data inputs for the LLM.
An **Agent** component relies on keys (variables) to specify its data inputs. Its immediate upstream component is *not* necessarily its data input, and the arrows in the workflow indicate *only* the processing sequence. Keys in a **Agent** component are used in conjunction with the system prompt to specify data inputs for the LLM. Use a forward slash `/` or the **(x)** button to show the keys to use.
From v0.20.5 onwards, four framework-level prompt blocks are available in the **System prompt** field, enabling you to customize and *override* prompts at the framework level. Type `/` or click **(x)** to view them; they appear under the **Framework** entry in the dropdown menu.
- This block is responsible for analyzing tasks — either a user task or a task assigned by the lead Agent when the **Agent** component is acting as a Sub-Agent.
- Reference design: [analyze_task_system.md](https://github.com/infiniflow/ragflow/blob/main/rag/prompts/analyze_task_system.md) and [analyze_task_user.md](https://github.com/infiniflow/ragflow/blob/main/rag/prompts/analyze_task_user.md)
- Available *only* when this **Agent** component is acting as a planner, with either tools or sub-Agents under it.
- Input variables:
- `agent_prompt`: The system prompt.
- `task`: The user prompt for either a lead Agent or a sub-Agent. The lead Agent's user prompt is defined by the user, while a sub-Agent's user prompt is defined by the lead Agent when delegating tasks.
- `tool_desc`: A description of the tools and sub_Agents that can be called.
- `context`: The operational context, which stores interactions between the Agent, tools, and sub-agents; initially empty.
- `plan_generation` prompt block
- This block creates a plan for the **Agent** component to execute next, based on the task analysis results.
- Available *only* when this **Agent** component is acting as a planner, with either tools or sub-Agents under it.
- Input variables:
- `goal`: The goal of the current task. It is the user prompt for either a lead Agent or a sub-Agent. The lead Agent's user prompt is defined by the user, while a sub-Agent's user prompt is defined by the lead Agent.
*The screenshots below show the framework prompt blocks available to an **Agent** component, both as a standalone and as a planner (with a Tavily tool below):*
The user-defined prompt. Defaults to `sys.query`, the user query. As a general rule, when using the **Agent** component as a standalone module (not as a planner), you usually need to specify the corresponding **Retrieval** component’s output variable (`formalized_content`) here as part of the input to the LLM.
You can use an **Agent** component as a collaborator that reasons and reflects with the aid of other tools; for instance, **Retrieval** can serve as one such tool for an **Agent**.
An integer specifying the number of previous dialogue rounds to input into the LLM. For example, if it is set to 12, the tokens from the last 12 dialogue rounds will be fed to the LLM. This feature consumes additional tokens.
:::tip IMPORTANT
This feature is used for multi-turn dialogue *only*.
Defines the maximum number of attempts the agent will make to retry a failed task or operation before stopping or reporting failure.
### Delay after error
The waiting period in seconds that the agent observes before retrying a failed task, helping to prevent immediate repeated attempts and allowing system conditions to improve. Defaults to 1 second.
The global variable name for the output of the **Agent** component, which can be referenced by other components in the workflow.
## Frequently asked questions
### Why does it take so long for my Agent to respond?
An Agent’s response time generally depends on two key factors: the LLM’s capabilities and the prompt, the latter reflecting task complexity. When using an Agent, you should always balance task demands with the LLM’s ability. See [How to balance task complexity with an Agent's performance and speed?](#how-to-balance-task-complexity-with-an-agents-performance-and-speed) for details.
## Best practices
### How to balance task complexity with an Agent’s performance and speed?
- For simple tasks, such as retrieval, rewriting, formatting, or structured data extraction, use concise prompts, remove planning or reasoning instructions, enforce output length limits, and select smaller or Turbo-class models. This significantly reduces latency and cost with minimal impact on quality.
- For complex tasks, like multi-step reasoning, cross-document synthesis, or tool-based workflows, maintain or enhance prompts that include planning, reflection, and verification steps.
- In multi-Agent orchestration systems, delegate simple subtasks to sub-Agents using smaller, faster models, and reserve more powerful models for the lead Agent to handle complexity and uncertainty.
:::tip KEY INSIGHT
Focus on minimizing output tokens — through summarization, bullet points, or explicit length limits — as this has far greater impact on reducing latency than optimizing input size.