ragflow/rag/svr/task_executor.py

269 lines
8.4 KiB
Python
Raw Normal View History

#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import datetime
import json
import logging
import os
import hashlib
import copy
import re
import sys
import traceback
from functools import partial
from timeit import default_timer as timer
from elasticsearch_dsl import Q
from api.db.services.task_service import TaskService
from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
from rag.utils import ELASTICSEARCH
from rag.utils import MINIO
from rag.utils import rmSpace, findMaxTm
from rag.nlp import search
from io import BytesIO
import pandas as pd
2024-02-29 14:03:07 +08:00
from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive
from api.db import LLMType, ParserType
2024-01-17 20:20:42 +08:00
from api.db.services.document_service import DocumentService
from api.db.services.llm_service import LLMBundle
2024-01-17 20:20:42 +08:00
from api.settings import database_logger
from api.utils.file_utils import get_project_base_directory
BATCH_SIZE = 64
FACTORY = {
"general": naive,
2024-02-29 14:03:07 +08:00
ParserType.NAIVE.value: naive,
ParserType.PAPER.value: paper,
ParserType.BOOK.value: book,
ParserType.PRESENTATION.value: presentation,
ParserType.MANUAL.value: manual,
ParserType.LAWS.value: laws,
ParserType.QA.value: qa,
ParserType.TABLE.value: table,
ParserType.RESUME.value: resume,
ParserType.PICTURE.value: picture,
}
def set_progress(task_id, from_page=0, to_page=-1,
prog=None, msg="Processing..."):
if prog is not None and prog < 0:
msg = "[ERROR]"+msg
cancel = TaskService.do_cancel(task_id)
if cancel:
msg += " [Canceled]"
prog = -1
if to_page > 0:
if msg:
msg = f"Page({from_page}~{to_page}): " + msg
d = {"progress_msg": msg}
if prog is not None:
d["progress"] = prog
try:
TaskService.update_progress(task_id, d)
except Exception as e:
cron_logger.error("set_progress:({}), {}".format(task_id, str(e)))
if cancel:
sys.exit()
def collect(comm, mod, tm):
tasks = TaskService.get_tasks(tm, mod, comm)
if len(tasks) == 0:
return pd.DataFrame()
tasks = pd.DataFrame(tasks)
mtm = tasks["update_time"].max()
cron_logger.info("TOTAL:{}, To:{}".format(len(tasks), mtm))
return tasks
def build(row):
if row["size"] > DOC_MAXIMUM_SIZE:
set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
(int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
return []
callback = partial(
set_progress,
row["id"],
row["from_page"],
row["to_page"])
chunker = FACTORY[row["parser_id"].lower()]
try:
cron_logger.info(
"Chunkking {}/{}".format(row["location"], row["name"]))
cks = chunker.chunk(row["name"], binary=MINIO.get(row["kb_id"], row["location"]), from_page=row["from_page"],
to_page=row["to_page"], lang=row["language"], callback=callback,
kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"])
except Exception as e:
if re.search("(No such file|not found)", str(e)):
2024-03-01 19:48:01 +08:00
callback(-1, "Can not find file <%s>" % row["name"])
else:
callback(-1, f"Internal server error: %s" %
str(e).replace("'", ""))
traceback.print_exc()
cron_logger.warn(
"Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))
return
callback(msg="Finished slicing files(%d). Start to embedding the content."%len(cks))
docs = []
doc = {
"doc_id": row["doc_id"],
"kb_id": [str(row["kb_id"])]
}
for ck in cks:
d = copy.deepcopy(doc)
d.update(ck)
2024-01-22 19:51:38 +08:00
md5 = hashlib.md5()
md5.update((ck["content_with_weight"] +
str(d["doc_id"])).encode("utf-8"))
d["_id"] = md5.hexdigest()
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
if not d.get("image"):
docs.append(d)
continue
output_buffer = BytesIO()
if isinstance(d["image"], bytes):
output_buffer = BytesIO(d["image"])
else:
d["image"].save(output_buffer, format='JPEG')
MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
del d["image"]
docs.append(d)
return docs
def init_kb(row):
idxnm = search.index_name(row["tenant_id"])
if ELASTICSEARCH.indexExist(idxnm):
return
return ELASTICSEARCH.createIdx(idxnm, json.load(
open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))
def embedding(docs, mdl, parser_config={}, callback=None):
tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [
d["content_with_weight"] for d in docs]
tk_count = 0
if len(tts) == len(cnts):
tts, c = mdl.encode(tts)
tk_count += c
cnts_ = []
for i in range(0, len(cnts), 32):
vts, c = mdl.encode(cnts[i: i+32])
cnts_.extend(vts)
tk_count += c
callback(msg="")
cnts = cnts_
title_w = float(parser_config.get("filename_embd_weight", 0.1))
vects = (title_w * tts + (1 - title_w) *
cnts) if len(tts) == len(cnts) else cnts
assert len(vects) == len(docs)
for i, d in enumerate(docs):
v = vects[i].tolist()
d["q_%d_vec" % len(v)] = v
return tk_count
def main(comm, mod):
tm_fnm = os.path.join(
get_project_base_directory(),
"rag/res",
f"{comm}-{mod}.tm")
tm = findMaxTm(tm_fnm)
rows = collect(comm, mod, tm)
if len(rows) == 0:
return
tmf = open(tm_fnm, "a+")
for _, r in rows.iterrows():
callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
try:
embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING)
except Exception as e:
callback(prog=-1, msg=str(e))
continue
cks = build(r)
if cks is None:
continue
if not cks:
tmf.write(str(r["update_time"]) + "\n")
callback(1., "No chunk! Done!")
continue
# TODO: exception handler
## set_progress(r["did"], -1, "ERROR: ")
try:
tk_count = embedding(cks, embd_mdl, r["parser_config"], callback)
except Exception as e:
callback(-1, "Embedding error:{}".format(str(e)))
cron_logger.error(str(e))
tk_count = 0
callback(msg="Finished embedding! Start to build index!")
init_kb(r)
2024-01-22 19:51:38 +08:00
chunk_count = len(set([c["_id"] for c in cks]))
es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"]))
if es_r:
callback(-1, "Index failure!")
ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
cron_logger.error(str(es_r))
else:
if TaskService.do_cancel(r["id"]):
ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
continue
callback(1., "Done!")
DocumentService.increment_chunk_num(
r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
cron_logger.info(
"Chunk doc({}), token({}), chunks({})".format(
r["id"], tk_count, len(cks)))
tmf.write(str(r["update_time"]) + "\n")
tmf.close()
if __name__ == "__main__":
peewee_logger = logging.getLogger('peewee')
peewee_logger.propagate = False
peewee_logger.addHandler(database_logger.handlers[0])
peewee_logger.setLevel(database_logger.level)
from mpi4py import MPI
comm = MPI.COMM_WORLD
main(comm.Get_size(), comm.Get_rank())