mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-19 11:08:57 +00:00
162 lines
6.1 KiB
Python
162 lines
6.1 KiB
Python
|
|
#
|
|||
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|||
|
|
#
|
|||
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
|
# you may not use this file except in compliance with the License.
|
|||
|
|
# You may obtain a copy of the License at
|
|||
|
|
#
|
|||
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
|
#
|
|||
|
|
# Unless required by applicable law or agreed to in writing, software
|
|||
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
|
# See the License for the specific language governing permissions and
|
|||
|
|
# limitations under the License.
|
|||
|
|
#
|
|||
|
|
import os
|
|||
|
|
import re
|
|||
|
|
from abc import ABC
|
|||
|
|
from agent.tools.base import ToolParamBase, ToolBase, ToolMeta
|
|||
|
|
from api.db import LLMType
|
|||
|
|
from api.db.services.knowledgebase_service import KnowledgebaseService
|
|||
|
|
from api.db.services.llm_service import LLMBundle
|
|||
|
|
from api import settings
|
|||
|
|
from api.utils.api_utils import timeout
|
|||
|
|
from rag.app.tag import label_question
|
|||
|
|
from rag.prompts import kb_prompt
|
|||
|
|
from rag.prompts.prompts import cross_languages
|
|||
|
|
|
|||
|
|
|
|||
|
|
class RetrievalParam(ToolParamBase):
|
|||
|
|
"""
|
|||
|
|
Define the Retrieval component parameters.
|
|||
|
|
"""
|
|||
|
|
|
|||
|
|
def __init__(self):
|
|||
|
|
self.meta:ToolMeta = {
|
|||
|
|
"name": "search_my_dateset",
|
|||
|
|
"description": "This tool can be utilized for relevant content searching in the datasets.",
|
|||
|
|
"parameters": {
|
|||
|
|
"query": {
|
|||
|
|
"type": "string",
|
|||
|
|
"description": "The keywords to search the dataset. The keywords should be the most important words/terms(includes synonyms) from the original request.",
|
|||
|
|
"default": "",
|
|||
|
|
"required": True
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
super().__init__()
|
|||
|
|
self.function_name = "search_my_dateset"
|
|||
|
|
self.description = "This tool can be utilized for relevant content searching in the datasets."
|
|||
|
|
self.similarity_threshold = 0.2
|
|||
|
|
self.keywords_similarity_weight = 0.5
|
|||
|
|
self.top_n = 8
|
|||
|
|
self.top_k = 1024
|
|||
|
|
self.kb_ids = []
|
|||
|
|
self.kb_vars = []
|
|||
|
|
self.rerank_id = ""
|
|||
|
|
self.empty_response = ""
|
|||
|
|
self.use_kg = False
|
|||
|
|
self.cross_languages = []
|
|||
|
|
|
|||
|
|
def check(self):
|
|||
|
|
self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold")
|
|||
|
|
self.check_decimal_float(self.keywords_similarity_weight, "[Retrieval] Keyword similarity weight")
|
|||
|
|
self.check_positive_number(self.top_n, "[Retrieval] Top N")
|
|||
|
|
|
|||
|
|
def get_input_form(self) -> dict[str, dict]:
|
|||
|
|
return {
|
|||
|
|
"query": {
|
|||
|
|
"name": "Query",
|
|||
|
|
"type": "line"
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
class Retrieval(ToolBase, ABC):
|
|||
|
|
component_name = "Retrieval"
|
|||
|
|
|
|||
|
|
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
|
|||
|
|
def _invoke(self, **kwargs):
|
|||
|
|
if not kwargs.get("query"):
|
|||
|
|
self.set_output("formalized_content", self._param.empty_response)
|
|||
|
|
|
|||
|
|
kb_ids: list[str] = []
|
|||
|
|
for id in self._param.kb_ids:
|
|||
|
|
if id.find("@") < 0:
|
|||
|
|
kb_ids.append(id)
|
|||
|
|
continue
|
|||
|
|
kb_nm = self._canvas.get_variable_value(id)
|
|||
|
|
e, kb = KnowledgebaseService.get_by_name(kb_nm)
|
|||
|
|
if not e:
|
|||
|
|
raise Exception(f"Dataset({kb_nm}) does not exist.")
|
|||
|
|
kb_ids.append(kb.id)
|
|||
|
|
|
|||
|
|
filtered_kb_ids: list[str] = list(set([kb_id for kb_id in kb_ids if kb_id]))
|
|||
|
|
|
|||
|
|
kbs = KnowledgebaseService.get_by_ids(filtered_kb_ids)
|
|||
|
|
if not kbs:
|
|||
|
|
raise Exception("No dataset is selected.")
|
|||
|
|
|
|||
|
|
embd_nms = list(set([kb.embd_id for kb in kbs]))
|
|||
|
|
assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
|
|||
|
|
|
|||
|
|
embd_mdl = None
|
|||
|
|
if embd_nms:
|
|||
|
|
embd_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, embd_nms[0])
|
|||
|
|
|
|||
|
|
rerank_mdl = None
|
|||
|
|
if self._param.rerank_id:
|
|||
|
|
rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
|
|||
|
|
|
|||
|
|
query = kwargs["query"]
|
|||
|
|
if self._param.cross_languages:
|
|||
|
|
query = cross_languages(kbs[0].tenant_id, None, query, self._param.cross_languages)
|
|||
|
|
|
|||
|
|
if kbs:
|
|||
|
|
query = re.sub(r"^user[::\s]*", "", query, flags=re.IGNORECASE)
|
|||
|
|
kbinfos = settings.retrievaler.retrieval(
|
|||
|
|
query,
|
|||
|
|
embd_mdl,
|
|||
|
|
[kb.tenant_id for kb in kbs],
|
|||
|
|
filtered_kb_ids,
|
|||
|
|
1,
|
|||
|
|
self._param.top_n,
|
|||
|
|
self._param.similarity_threshold,
|
|||
|
|
1 - self._param.keywords_similarity_weight,
|
|||
|
|
aggs=False,
|
|||
|
|
rerank_mdl=rerank_mdl,
|
|||
|
|
rank_feature=label_question(query, kbs),
|
|||
|
|
)
|
|||
|
|
if self._param.use_kg:
|
|||
|
|
ck = settings.kg_retrievaler.retrieval(query,
|
|||
|
|
[kb.tenant_id for kb in kbs],
|
|||
|
|
kb_ids,
|
|||
|
|
embd_mdl,
|
|||
|
|
LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT))
|
|||
|
|
if ck["content_with_weight"]:
|
|||
|
|
kbinfos["chunks"].insert(0, ck)
|
|||
|
|
else:
|
|||
|
|
kbinfos = {"chunks": [], "doc_aggs": []}
|
|||
|
|
|
|||
|
|
if self._param.use_kg and kbs:
|
|||
|
|
ck = settings.kg_retrievaler.retrieval(query, [kb.tenant_id for kb in kbs], filtered_kb_ids, embd_mdl, LLMBundle(kbs[0].tenant_id, LLMType.CHAT))
|
|||
|
|
if ck["content_with_weight"]:
|
|||
|
|
ck["content"] = ck["content_with_weight"]
|
|||
|
|
del ck["content_with_weight"]
|
|||
|
|
kbinfos["chunks"].insert(0, ck)
|
|||
|
|
|
|||
|
|
for ck in kbinfos["chunks"]:
|
|||
|
|
if "vector" in ck:
|
|||
|
|
del ck["vector"]
|
|||
|
|
if "content_ltks" in ck:
|
|||
|
|
del ck["content_ltks"]
|
|||
|
|
|
|||
|
|
if not kbinfos["chunks"]:
|
|||
|
|
self.set_output("formalized_content", self._param.empty_response)
|
|||
|
|
return
|
|||
|
|
|
|||
|
|
self._canvas.add_refernce(kbinfos["chunks"], kbinfos["doc_aggs"])
|
|||
|
|
form_cnt = "\n".join(kb_prompt(kbinfos, 200000, True))
|
|||
|
|
self.set_output("formalized_content", form_cnt)
|
|||
|
|
return form_cnt
|