2024-01-15 08:46:22 +08:00
#
2024-01-19 19:51:57 +08:00
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
2024-01-15 08:46:22 +08:00
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2025-10-14 14:14:52 +08:00
import concurrent
Removed beartype (#3528)
### What problem does this PR solve?
The beartype configuration of
main(64f50992e0fc4dce73e79f8b951a02e31cb2d638) is:
```
from beartype import BeartypeConf
from beartype.claw import beartype_all # <-- you didn't sign up for this
beartype_all(conf=BeartypeConf(violation_type=UserWarning)) # <-- emit warnings from all code
```
ragflow_server failed at a third-party package:
```
(ragflow-py3.10) zhichyu@iris:~/github.com/infiniflow/ragflow$ rm -rf logs/* && bash docker/launch_backend_service.sh
Starting task_executor.py for task 0 (Attempt 1)
Starting ragflow_server.py (Attempt 1)
Traceback (most recent call last):
File "/home/zhichyu/github.com/infiniflow/ragflow/api/ragflow_server.py", line 22, in <module>
from api.utils.log_utils import initRootLogger
File "/home/zhichyu/github.com/infiniflow/ragflow/api/utils/__init__.py", line 25, in <module>
import requests
File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/requests/__init__.py", line 43, in <module>
import urllib3
File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/__init__.py", line 15, in <module>
from ._base_connection import _TYPE_BODY
File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/_base_connection.py", line 5, in <module>
from .util.connection import _TYPE_SOCKET_OPTIONS
File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/util/__init__.py", line 4, in <module>
from .connection import is_connection_dropped
File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/util/connection.py", line 7, in <module>
from .timeout import _DEFAULT_TIMEOUT, _TYPE_TIMEOUT
File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/util/timeout.py", line 20, in <module>
_DEFAULT_TIMEOUT: Final[_TYPE_DEFAULT] = _TYPE_DEFAULT.token
NameError: name 'Final' is not defined
Traceback (most recent call last):
File "/home/zhichyu/github.com/infiniflow/ragflow/rag/svr/task_executor.py", line 22, in <module>
from api.utils.log_utils import initRootLogger
File "/home/zhichyu/github.com/infiniflow/ragflow/api/utils/__init__.py", line 25, in <module>
import requests
File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/requests/__init__.py", line 43, in <module>
import urllib3
File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/__init__.py", line 15, in <module>
from ._base_connection import _TYPE_BODY
File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/_base_connection.py", line 5, in <module>
from .util.connection import _TYPE_SOCKET_OPTIONS
File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/util/__init__.py", line 4, in <module>
from .connection import is_connection_dropped
File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/util/connection.py", line 7, in <module>
from .timeout import _DEFAULT_TIMEOUT, _TYPE_TIMEOUT
File "/home/zhichyu/github.com/infiniflow/ragflow/.venv/lib/python3.10/site-packages/urllib3/util/timeout.py", line 20, in <module>
_DEFAULT_TIMEOUT: Final[_TYPE_DEFAULT] = _TYPE_DEFAULT.token
NameError: name 'Final' is not defined
```
This third-package is out of our control. I have to remove beartype
entirely.
### Type of change
- [x] Bug Fix (non-breaking change which fixes an issue)
2024-11-20 17:43:16 +08:00
# from beartype import BeartypeConf
# from beartype.claw import beartype_all # <-- you didn't sign up for this
# beartype_all(conf=BeartypeConf(violation_type=UserWarning)) # <-- emit warnings from all code
2025-01-09 17:07:21 +08:00
import random
2024-11-15 14:43:55 +08:00
import sys
2025-04-19 16:18:51 +08:00
import threading
import time
2025-03-03 10:26:45 +08:00
2025-10-09 12:36:19 +08:00
import json_repair
from api . db . services . canvas_service import UserCanvasService
from api . db . services . knowledgebase_service import KnowledgebaseService
from api . db . services . pipeline_operation_log_service import PipelineOperationLogService
2025-08-25 18:29:24 +08:00
from api . utils . api_utils import timeout
2025-10-09 12:36:19 +08:00
from api . utils . base64_image import image2id
2025-06-18 09:41:09 +08:00
from api . utils . log_utils import init_root_logger , get_project_base_directory
2025-10-09 12:36:19 +08:00
from graphrag . general . index import run_graphrag_for_kb
2025-01-09 17:07:21 +08:00
from graphrag . utils import get_llm_cache , set_llm_cache , get_tags_from_cache , set_tags_to_cache
2025-09-05 18:50:46 +08:00
from rag . flow . pipeline import Pipeline
2025-10-10 17:07:55 +08:00
from rag . prompts . generator import keyword_extraction , question_proposal , content_tagging , run_toc_from_text
2024-12-10 09:36:59 +08:00
import logging
import os
2024-11-15 14:43:55 +08:00
from datetime import datetime
2024-01-15 08:46:22 +08:00
import json
2024-12-12 17:47:39 +08:00
import xxhash
2024-01-15 08:46:22 +08:00
import copy
import re
2024-01-31 19:57:45 +08:00
from functools import partial
2024-04-10 10:11:22 +08:00
from multiprocessing . context import TimeoutError
2024-04-22 14:11:09 +08:00
from timeit import default_timer as timer
2024-11-22 12:00:25 +08:00
import tracemalloc
2025-02-24 16:21:55 +08:00
import signal
2025-03-03 18:59:49 +08:00
import trio
2025-03-10 15:15:06 +08:00
import exceptiongroup
2025-03-13 14:37:59 +08:00
import faulthandler
2024-09-29 09:49:45 +08:00
import numpy as np
2024-12-12 16:38:03 +08:00
from peewee import DoesNotExist
2025-10-09 12:36:19 +08:00
from api . db import LLMType , ParserType , PipelineTaskType
2024-01-17 20:20:42 +08:00
from api . db . services . document_service import DocumentService
2024-01-31 19:57:45 +08:00
from api . db . services . llm_service import LLMBundle
2025-10-09 12:36:19 +08:00
from api . db . services . task_service import TaskService , has_canceled , CANVAS_DEBUG_DOC_ID , GRAPH_RAPTOR_FAKE_DOC_ID
2024-09-29 09:49:45 +08:00
from api . db . services . file2document_service import File2DocumentService
2024-11-15 17:30:56 +08:00
from api import settings
2024-11-30 18:48:06 +08:00
from api . versions import get_ragflow_version
2024-09-29 09:49:45 +08:00
from api . db . db_models import close_connection
2024-11-15 17:30:56 +08:00
from rag . app import laws , paper , presentation , manual , qa , table , book , resume , picture , naive , one , audio , \
2025-01-22 19:43:14 +08:00
email , tag
2025-10-09 12:36:19 +08:00
from rag . nlp import search , rag_tokenizer , add_positions
2024-09-29 09:49:45 +08:00
from rag . raptor import RecursiveAbstractiveProcessing4TreeOrganizedRetrieval as Raptor
Feat: make document parsing and embedding batch sizes configurable via environment variables (#8266)
### Description
This PR introduces two new environment variables, `DOC_BULK_SIZE` and
`EMBEDDING_BATCH_SIZE`, to allow flexible tuning of batch sizes for
document parsing and embedding vectorization in RAGFlow. By making these
parameters configurable, users can optimize performance and resource
usage according to their hardware capabilities and workload
requirements.
### What problem does this PR solve?
Previously, the batch sizes for document parsing and embedding were
hardcoded, limiting the ability to adjust throughput and memory
consumption. This PR enables users to set these values via environment
variables (in `.env`, Helm chart, or directly in the deployment
environment), improving flexibility and scalability for both small and
large deployments.
- `DOC_BULK_SIZE`: Controls how many document chunks are processed in a
single batch during document parsing (default: 4).
- `EMBEDDING_BATCH_SIZE`: Controls how many text chunks are processed
in a single batch during embedding vectorization (default: 16).
This change updates the codebase, documentation, and configuration files
to reflect the new options.
### Type of change
- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
- [ ] Refactoring
- [x] Performance Improvement
- [ ] Other (please describe):
### Additional context
- Updated `.env`, `helm/values.yaml`, and documentation to describe
the new variables.
- Modified relevant code paths to use the environment variables instead
of hardcoded values.
- Users can now tune these parameters to achieve better throughput or
reduce memory usage as needed.
Before:
Default value:
<img width="643" alt="image"
src="https://github.com/user-attachments/assets/086e1173-18f3-419d-a0f5-68394f63866a"
/>
After:
10x:
<img width="777" alt="image"
src="https://github.com/user-attachments/assets/5722bbc0-0bcb-4536-b928-077031e550f1"
/>
2025-06-16 13:40:47 +08:00
from rag . settings import DOC_MAXIMUM_SIZE , DOC_BULK_SIZE , EMBEDDING_BATCH_SIZE , SVR_CONSUMER_GROUP_NAME , get_svr_queue_name , get_svr_queue_names , print_rag_settings , TAG_FLD , PAGERANK_FLD
2025-03-21 12:43:32 +08:00
from rag . utils import num_tokens_from_string , truncate
2025-04-19 16:18:51 +08:00
from rag . utils . redis_conn import REDIS_CONN , RedisDistributedLock
2024-09-29 09:49:45 +08:00
from rag . utils . storage_factory import STORAGE_IMPL
2025-03-03 18:59:49 +08:00
from graphrag . utils import chat_limiter
2024-01-15 08:46:22 +08:00
BATCH_SIZE = 64
2024-01-31 19:57:45 +08:00
FACTORY = {
2024-03-04 14:42:26 +08:00
" general " : naive ,
2024-02-29 14:03:07 +08:00
ParserType . NAIVE . value : naive ,
2024-01-31 19:57:45 +08:00
ParserType . PAPER . value : paper ,
2024-02-05 18:08:17 +08:00
ParserType . BOOK . value : book ,
2024-01-31 19:57:45 +08:00
ParserType . PRESENTATION . value : presentation ,
ParserType . MANUAL . value : manual ,
ParserType . LAWS . value : laws ,
2024-02-01 18:53:56 +08:00
ParserType . QA . value : qa ,
2024-02-05 18:08:17 +08:00
ParserType . TABLE . value : table ,
2024-02-08 17:01:01 +08:00
ParserType . RESUME . value : resume ,
2024-02-23 18:28:12 +08:00
ParserType . PICTURE . value : picture ,
2024-03-20 18:57:22 +08:00
ParserType . ONE . value : one ,
2024-08-02 18:51:14 +08:00
ParserType . AUDIO . value : audio ,
2024-08-06 16:42:14 +08:00
ParserType . EMAIL . value : email ,
2025-01-22 19:43:14 +08:00
ParserType . KG . value : naive ,
2025-01-09 17:07:21 +08:00
ParserType . TAG . value : tag
2024-01-31 19:57:45 +08:00
}
2025-10-09 12:36:19 +08:00
TASK_TYPE_TO_PIPELINE_TASK_TYPE = {
" dataflow " : PipelineTaskType . PARSE ,
" raptor " : PipelineTaskType . RAPTOR ,
" graphrag " : PipelineTaskType . GRAPH_RAG ,
" mindmap " : PipelineTaskType . MINDMAP ,
}
2025-03-03 18:59:49 +08:00
UNACKED_ITERATOR = None
2025-03-14 14:13:47 +08:00
CONSUMER_NO = " 0 " if len ( sys . argv ) < 2 else sys . argv [ 1 ]
CONSUMER_NAME = " task_executor_ " + CONSUMER_NO
2024-12-23 17:25:55 +08:00
BOOT_AT = datetime . now ( ) . astimezone ( ) . isoformat ( timespec = " milliseconds " )
2024-11-15 14:43:55 +08:00
PENDING_TASKS = 0
2024-11-15 18:51:09 +08:00
LAG_TASKS = 0
2024-11-15 22:55:41 +08:00
DONE_TASKS = 0
FAILED_TASKS = 0
2025-03-03 18:59:49 +08:00
CURRENT_TASKS = { }
MAX_CONCURRENT_TASKS = int ( os . environ . get ( ' MAX_CONCURRENT_TASKS ' , " 5 " ) )
MAX_CONCURRENT_CHUNK_BUILDERS = int ( os . environ . get ( ' MAX_CONCURRENT_CHUNK_BUILDERS ' , " 1 " ) )
2025-05-06 14:39:45 +08:00
MAX_CONCURRENT_MINIO = int ( os . environ . get ( ' MAX_CONCURRENT_MINIO ' , ' 10 ' ) )
2025-06-06 03:32:35 -03:00
task_limiter = trio . Semaphore ( MAX_CONCURRENT_TASKS )
2025-03-03 18:59:49 +08:00
chunk_limiter = trio . CapacityLimiter ( MAX_CONCURRENT_CHUNK_BUILDERS )
2025-07-23 10:17:04 +08:00
embed_limiter = trio . CapacityLimiter ( MAX_CONCURRENT_CHUNK_BUILDERS )
2025-05-06 14:39:45 +08:00
minio_limiter = trio . CapacityLimiter ( MAX_CONCURRENT_MINIO )
2025-05-27 11:16:29 +08:00
kg_limiter = trio . CapacityLimiter ( 2 )
2025-04-19 16:18:51 +08:00
WORKER_HEARTBEAT_TIMEOUT = int ( os . environ . get ( ' WORKER_HEARTBEAT_TIMEOUT ' , ' 120 ' ) )
stop_event = threading . Event ( )
def signal_handler ( sig , frame ) :
logging . info ( " Received interrupt signal, shutting down... " )
stop_event . set ( )
time . sleep ( 1 )
sys . exit ( 0 )
2025-02-24 16:21:55 +08:00
2025-03-17 11:58:40 +08:00
2025-02-24 16:21:55 +08:00
# SIGUSR1 handler: start tracemalloc and take snapshot
def start_tracemalloc_and_snapshot ( signum , frame ) :
2025-03-03 18:59:49 +08:00
if not tracemalloc . is_tracing ( ) :
logging . info ( " start tracemalloc " )
2025-02-24 16:21:55 +08:00
tracemalloc . start ( )
else :
2025-03-03 18:59:49 +08:00
logging . info ( " tracemalloc is already running " )
2025-02-24 16:21:55 +08:00
timestamp = datetime . now ( ) . strftime ( " % Y % m %d _ % H % M % S " )
snapshot_file = f " snapshot_ { timestamp } .trace "
snapshot_file = os . path . abspath ( os . path . join ( get_project_base_directory ( ) , " logs " , f " { os . getpid ( ) } _snapshot_ { timestamp } .trace " ) )
snapshot = tracemalloc . take_snapshot ( )
snapshot . dump ( snapshot_file )
2025-03-03 18:59:49 +08:00
current , peak = tracemalloc . get_traced_memory ( )
2025-03-12 09:43:18 +08:00
if sys . platform == " win32 " :
import psutil
process = psutil . Process ( )
max_rss = process . memory_info ( ) . rss / 1024
else :
import resource
max_rss = resource . getrusage ( resource . RUSAGE_SELF ) . ru_maxrss
2025-03-03 18:59:49 +08:00
logging . info ( f " taken snapshot { snapshot_file } . max RSS= { max_rss / 1000 : .2f } MB, current memory usage: { current / 10 * * 6 : .2f } MB, Peak memory usage: { peak / 10 * * 6 : .2f } MB " )
2025-02-24 16:21:55 +08:00
2025-10-09 12:36:19 +08:00
2025-02-24 16:21:55 +08:00
# SIGUSR2 handler: stop tracemalloc
def stop_tracemalloc ( signum , frame ) :
2025-03-03 18:59:49 +08:00
if tracemalloc . is_tracing ( ) :
logging . info ( " stop tracemalloc " )
2025-02-24 16:21:55 +08:00
tracemalloc . stop ( )
else :
2025-03-03 18:59:49 +08:00
logging . info ( " tracemalloc not running " )
2024-12-31 14:31:31 +08:00
2025-10-09 12:36:19 +08:00
2024-12-12 16:38:03 +08:00
class TaskCanceledException ( Exception ) :
def __init__ ( self , msg ) :
self . msg = msg
2024-11-15 17:30:56 +08:00
2024-12-31 14:31:31 +08:00
2024-09-29 09:49:45 +08:00
def set_progress ( task_id , from_page = 0 , to_page = - 1 , prog = None , msg = " Processing... " ) :
2025-03-13 14:37:59 +08:00
try :
if prog is not None and prog < 0 :
msg = " [ERROR] " + msg
2025-07-15 17:19:27 +08:00
cancel = has_canceled ( task_id )
2025-03-13 14:37:59 +08:00
if cancel :
msg + = " [Canceled] "
prog = - 1
if to_page > 0 :
if msg :
if from_page < to_page :
msg = f " Page( { from_page + 1 } ~ { to_page + 1 } ): " + msg
2024-03-05 12:08:41 +08:00
if msg :
2025-03-13 14:37:59 +08:00
msg = datetime . now ( ) . strftime ( " % H: % M: % S " ) + " " + msg
d = { " progress_msg " : msg }
if prog is not None :
d [ " progress " ] = prog
TaskService . update_progress ( task_id , d )
close_connection ( )
if cancel :
raise TaskCanceledException ( msg )
logging . info ( f " set_progress( { task_id } ), progress: { prog } , progress_msg: { msg } " )
except DoesNotExist :
logging . warning ( f " set_progress( { task_id } ) got exception DoesNotExist " )
except Exception :
logging . exception ( f " set_progress( { task_id } ), progress: { prog } , progress_msg: { msg } , got exception " )
2024-01-15 08:46:22 +08:00
2025-07-21 15:56:45 +08:00
2025-03-03 18:59:49 +08:00
async def collect ( ) :
global CONSUMER_NAME , DONE_TASKS , FAILED_TASKS
global UNACKED_ITERATOR
2025-06-12 19:09:50 +08:00
2025-06-13 16:38:53 +08:00
svr_queue_names = get_svr_queue_names ( )
2024-05-07 11:43:33 +08:00
try :
2025-03-03 18:59:49 +08:00
if not UNACKED_ITERATOR :
2025-06-13 16:38:53 +08:00
UNACKED_ITERATOR = REDIS_CONN . get_unacked_iterator ( svr_queue_names , SVR_CONSUMER_GROUP_NAME , CONSUMER_NAME )
try :
redis_msg = next ( UNACKED_ITERATOR )
except StopIteration :
2025-03-14 23:43:46 +08:00
for svr_queue_name in svr_queue_names :
2025-06-13 16:38:53 +08:00
redis_msg = REDIS_CONN . queue_consumer ( svr_queue_name , SVR_CONSUMER_GROUP_NAME , CONSUMER_NAME )
if redis_msg :
break
except Exception :
logging . exception ( " collect got exception " )
2025-03-03 18:59:49 +08:00
return None , None
2024-05-07 11:43:33 +08:00
2025-03-14 23:43:46 +08:00
if not redis_msg :
return None , None
2025-03-03 18:59:49 +08:00
msg = redis_msg . get_message ( )
2024-08-28 14:06:27 +08:00
if not msg :
2025-03-03 18:59:49 +08:00
logging . error ( f " collect got empty message of { redis_msg . get_msg_id ( ) } " )
redis_msg . ack ( )
return None , None
2024-05-07 11:43:33 +08:00
2024-12-12 16:38:03 +08:00
canceled = False
2025-10-09 12:36:19 +08:00
if msg . get ( " doc_id " , " " ) in [ GRAPH_RAPTOR_FAKE_DOC_ID , CANVAS_DEBUG_DOC_ID ] :
task = msg
2025-10-22 09:29:20 +08:00
if task [ " task_type " ] in [ " graphrag " , " raptor " , " mindmap " ] :
2025-10-09 12:36:19 +08:00
task = TaskService . get_task ( msg [ " id " ] , msg [ " doc_ids " ] )
2025-10-22 09:29:20 +08:00
task [ " doc_id " ] = msg [ " doc_id " ]
task [ " doc_ids " ] = msg . get ( " doc_ids " , [ ] ) or [ ]
2025-10-09 12:36:19 +08:00
else :
task = TaskService . get_task ( msg [ " id " ] )
2025-03-03 18:59:49 +08:00
if task :
2025-07-15 17:19:27 +08:00
canceled = has_canceled ( task [ " id " ] )
2024-12-12 16:38:03 +08:00
if not task or canceled :
state = " is unknown " if not task else " has been cancelled "
2025-03-03 18:59:49 +08:00
FAILED_TASKS + = 1
logging . warning ( f " collect task { msg [ ' id ' ] } { state } " )
redis_msg . ack ( )
2025-03-05 14:48:03 +08:00
return None , None
2025-09-05 18:50:46 +08:00
task_type = msg . get ( " task_type " , " " )
task [ " task_type " ] = task_type
2025-10-09 12:36:19 +08:00
if task_type [ : 8 ] == " dataflow " :
task [ " tenant_id " ] = msg [ " tenant_id " ]
task [ " dataflow_id " ] = msg [ " dataflow_id " ]
2025-09-05 18:50:46 +08:00
task [ " kb_id " ] = msg . get ( " kb_id " , " " )
2025-03-03 18:59:49 +08:00
return redis_msg , task
2024-01-15 08:46:22 +08:00
2024-04-08 19:20:57 +08:00
2025-03-03 18:59:49 +08:00
async def get_storage_binary ( bucket , name ) :
return await trio . to_thread . run_sync ( lambda : STORAGE_IMPL . get ( bucket , name ) )
2024-04-08 19:20:57 +08:00
2024-01-15 08:46:22 +08:00
2025-08-07 09:40:42 +08:00
@timeout ( 60 * 80 , 1 )
2025-03-03 18:59:49 +08:00
async def build_chunks ( task , progress_callback ) :
2024-12-01 22:28:00 +08:00
if task [ " size " ] > DOC_MAXIMUM_SIZE :
set_progress ( task [ " id " ] , prog = - 1 , msg = " File size exceeds( <= %d Mb ) " %
( int ( DOC_MAXIMUM_SIZE / 1024 / 1024 ) ) )
2024-01-15 08:46:22 +08:00
return [ ]
2024-01-15 19:47:25 +08:00
2024-12-01 22:28:00 +08:00
chunker = FACTORY [ task [ " parser_id " ] . lower ( ) ]
2024-01-15 08:46:22 +08:00
try :
2024-04-08 19:20:57 +08:00
st = timer ( )
2024-12-01 22:28:00 +08:00
bucket , name = File2DocumentService . get_storage_address ( doc_id = task [ " doc_id " ] )
2025-03-03 18:59:49 +08:00
binary = await get_storage_binary ( bucket , name )
2024-12-01 22:28:00 +08:00
logging . info ( " From minio( {} ) {} / {} " . format ( timer ( ) - st , task [ " location " ] , task [ " name " ] ) )
2024-09-29 09:49:45 +08:00
except TimeoutError :
2024-12-01 22:28:00 +08:00
progress_callback ( - 1 , " Internal server error: Fetch file from minio timeout. Could you try it again. " )
2025-01-09 17:07:21 +08:00
logging . exception (
" Minio {} / {} got timeout: Fetch file from minio timeout. " . format ( task [ " location " ] , task [ " name " ] ) )
2024-11-15 18:51:09 +08:00
raise
2024-01-15 08:46:22 +08:00
except Exception as e :
if re . search ( " (No such file|not found) " , str ( e ) ) :
2024-12-01 22:28:00 +08:00
progress_callback ( - 1 , " Can not find file < %s > from minio. Could you try it again? " % task [ " name " ] )
2024-01-15 08:46:22 +08:00
else :
2024-12-01 22:28:00 +08:00
progress_callback ( - 1 , " Get file from minio: %s " % str ( e ) . replace ( " ' " , " " ) )
logging . exception ( " Chunking {} / {} got exception " . format ( task [ " location " ] , task [ " name " ] ) )
2024-11-15 18:51:09 +08:00
raise
2024-01-15 19:47:25 +08:00
2024-08-14 11:09:07 +08:00
try :
2025-03-03 18:59:49 +08:00
async with chunk_limiter :
cks = await trio . to_thread . run_sync ( lambda : chunker . chunk ( task [ " name " ] , binary = binary , from_page = task [ " from_page " ] ,
2025-03-17 16:49:54 +08:00
to_page = task [ " to_page " ] , lang = task [ " language " ] , callback = progress_callback ,
2025-03-03 18:59:49 +08:00
kb_id = task [ " kb_id " ] , parser_config = task [ " parser_config " ] , tenant_id = task [ " tenant_id " ] ) )
2024-12-01 22:28:00 +08:00
logging . info ( " Chunking( {} ) {} / {} done " . format ( timer ( ) - st , task [ " location " ] , task [ " name " ] ) )
2024-12-12 16:38:03 +08:00
except TaskCanceledException :
raise
2024-08-14 11:09:07 +08:00
except Exception as e :
2024-12-01 22:28:00 +08:00
progress_callback ( - 1 , " Internal server error while chunking: %s " % str ( e ) . replace ( " ' " , " " ) )
logging . exception ( " Chunking {} / {} got exception " . format ( task [ " location " ] , task [ " name " ] ) )
2024-11-15 18:51:09 +08:00
raise
2024-01-15 08:46:22 +08:00
2024-01-31 19:57:45 +08:00
docs = [ ]
2024-01-15 08:46:22 +08:00
doc = {
2024-12-01 22:28:00 +08:00
" doc_id " : task [ " doc_id " ] ,
" kb_id " : str ( task [ " kb_id " ] )
2024-01-15 08:46:22 +08:00
}
2024-12-08 14:21:12 +08:00
if task [ " pagerank " ] :
2025-01-09 17:07:21 +08:00
doc [ PAGERANK_FLD ] = int ( task [ " pagerank " ] )
2025-05-06 14:39:45 +08:00
st = timer ( )
2024-01-15 08:46:22 +08:00
2025-07-15 09:36:45 +08:00
@timeout ( 60 )
2025-05-06 14:39:45 +08:00
async def upload_to_minio ( document , chunk ) :
2024-08-30 18:41:31 +08:00
try :
2025-05-27 17:49:37 +08:00
d = copy . deepcopy ( document )
d . update ( chunk )
2025-08-06 10:36:50 +08:00
d [ " id " ] = xxhash . xxh64 ( ( chunk [ " content_with_weight " ] + str ( d [ " doc_id " ] ) ) . encode ( " utf-8 " , " surrogatepass " ) ) . hexdigest ( )
2025-05-27 17:49:37 +08:00
d [ " create_time " ] = str ( datetime . now ( ) ) . replace ( " T " , " " ) [ : 19 ]
d [ " create_timestamp_flt " ] = datetime . now ( ) . timestamp ( )
if not d . get ( " image " ) :
_ = d . pop ( " image " , None )
d [ " img_id " ] = " "
docs . append ( d )
return
2025-10-14 14:14:52 +08:00
await image2id ( d , partial ( STORAGE_IMPL . put , tenant_id = task [ " tenant_id " ] ) , d [ " id " ] , task [ " kb_id " ] )
2025-10-09 12:36:19 +08:00
docs . append ( d )
2024-11-12 17:35:13 +08:00
except Exception :
2025-01-09 17:07:21 +08:00
logging . exception (
" Saving image of chunk {} / {} / {} got exception " . format ( task [ " location " ] , task [ " name " ] , d [ " id " ] ) )
2024-11-15 18:51:09 +08:00
raise
2024-01-15 08:46:22 +08:00
2025-05-06 14:39:45 +08:00
async with trio . open_nursery ( ) as nursery :
for ck in cks :
nursery . start_soon ( upload_to_minio , doc , ck )
el = timer ( ) - st
logging . info ( " MINIO PUT( {} ) cost {:.3f} s " . format ( task [ " name " ] , el ) )
2024-01-15 08:46:22 +08:00
2024-12-01 22:28:00 +08:00
if task [ " parser_config " ] . get ( " auto_keywords " , 0 ) :
2024-11-14 16:28:10 +08:00
st = timer ( )
2024-12-01 22:28:00 +08:00
progress_callback ( msg = " Start to generate keywords for every chunk ... " )
chat_mdl = LLMBundle ( task [ " tenant_id " ] , LLMType . CHAT , llm_name = task [ " llm_id " ] , lang = task [ " language " ] )
2024-12-17 09:48:03 +08:00
2025-02-26 15:21:14 +08:00
async def doc_keyword_extraction ( chat_mdl , d , topn ) :
cached = get_llm_cache ( chat_mdl . llm_name , d [ " content_with_weight " ] , " keywords " , { " topn " : topn } )
if not cached :
2025-03-03 18:59:49 +08:00
async with chat_limiter :
cached = await trio . to_thread . run_sync ( lambda : keyword_extraction ( chat_mdl , d [ " content_with_weight " ] , topn ) )
2025-02-26 15:21:14 +08:00
set_llm_cache ( chat_mdl . llm_name , d [ " content_with_weight " ] , cached , " keywords " , { " topn " : topn } )
if cached :
d [ " important_kwd " ] = cached . split ( " , " )
d [ " important_tks " ] = rag_tokenizer . tokenize ( " " . join ( d [ " important_kwd " ] ) )
return
2025-03-03 18:59:49 +08:00
async with trio . open_nursery ( ) as nursery :
for d in docs :
fix(nursery): Fix Closure Trap Issues in Trio Concurrent Tasks (#7106)
## Problem Description
Multiple files in the RAGFlow project contain closure trap issues when
using lambda functions with `trio.open_nursery()`. This problem causes
concurrent tasks created in loops to reference the same variable,
resulting in all tasks processing the same data (the data from the last
iteration) rather than each task processing its corresponding data from
the loop.
## Issue Details
When using a `lambda` to create a closure function and passing it to
`nursery.start_soon()` within a loop, the lambda function captures a
reference to the loop variable rather than its value. For example:
```python
# Problematic code
async with trio.open_nursery() as nursery:
for d in docs:
nursery.start_soon(lambda: doc_keyword_extraction(chat_mdl, d, topn))
```
In this pattern, when concurrent tasks begin execution, `d` has already
become the value after the loop ends (typically the last element),
causing all tasks to use the same data.
## Fix Solution
Changed the way concurrent tasks are created with `nursery.start_soon()`
by leveraging Trio's API design to directly pass the function and its
arguments separately:
```python
# Fixed code
async with trio.open_nursery() as nursery:
for d in docs:
nursery.start_soon(doc_keyword_extraction, chat_mdl, d, topn)
```
This way, each task uses the parameter values at the time of the
function call, rather than references captured through closures.
## Fixed Files
Fixed closure traps in the following files:
1. `rag/svr/task_executor.py`: 3 fixes, involving document keyword
extraction, question generation, and tag processing
2. `rag/raptor.py`: 1 fix, involving document summarization
3. `graphrag/utils.py`: 2 fixes, involving graph node and edge
processing
4. `graphrag/entity_resolution.py`: 2 fixes, involving entity resolution
and graph node merging
5. `graphrag/general/mind_map_extractor.py`: 2 fixes, involving document
processing
6. `graphrag/general/extractor.py`: 3 fixes, involving content
processing and graph node/edge merging
7. `graphrag/general/community_reports_extractor.py`: 1 fix, involving
community report extraction
## Potential Impact
This fix resolves a serious concurrency issue that could have caused:
- Data processing errors (processing duplicate data)
- Performance degradation (all tasks working on the same data)
- Inconsistent results (some data not being processed)
After the fix, all concurrent tasks should correctly process their
respective data, improving system correctness and reliability.
2025-04-18 18:00:20 +08:00
nursery . start_soon ( doc_keyword_extraction , chat_mdl , d , task [ " parser_config " ] [ " auto_keywords " ] )
2025-02-26 15:21:14 +08:00
progress_callback ( msg = " Keywords generation {} chunks completed in {:.2f} s " . format ( len ( docs ) , timer ( ) - st ) )
2024-10-23 17:00:56 +08:00
2024-12-01 22:28:00 +08:00
if task [ " parser_config " ] . get ( " auto_questions " , 0 ) :
2024-11-14 16:28:10 +08:00
st = timer ( )
2024-12-01 22:28:00 +08:00
progress_callback ( msg = " Start to generate questions for every chunk ... " )
chat_mdl = LLMBundle ( task [ " tenant_id " ] , LLMType . CHAT , llm_name = task [ " llm_id " ] , lang = task [ " language " ] )
2024-12-17 09:48:03 +08:00
2025-02-26 15:21:14 +08:00
async def doc_question_proposal ( chat_mdl , d , topn ) :
cached = get_llm_cache ( chat_mdl . llm_name , d [ " content_with_weight " ] , " question " , { " topn " : topn } )
if not cached :
2025-03-03 18:59:49 +08:00
async with chat_limiter :
cached = await trio . to_thread . run_sync ( lambda : question_proposal ( chat_mdl , d [ " content_with_weight " ] , topn ) )
2025-02-26 15:21:14 +08:00
set_llm_cache ( chat_mdl . llm_name , d [ " content_with_weight " ] , cached , " question " , { " topn " : topn } )
if cached :
d [ " question_kwd " ] = cached . split ( " \n " )
d [ " question_tks " ] = rag_tokenizer . tokenize ( " \n " . join ( d [ " question_kwd " ] ) )
2025-03-03 18:59:49 +08:00
async with trio . open_nursery ( ) as nursery :
for d in docs :
fix(nursery): Fix Closure Trap Issues in Trio Concurrent Tasks (#7106)
## Problem Description
Multiple files in the RAGFlow project contain closure trap issues when
using lambda functions with `trio.open_nursery()`. This problem causes
concurrent tasks created in loops to reference the same variable,
resulting in all tasks processing the same data (the data from the last
iteration) rather than each task processing its corresponding data from
the loop.
## Issue Details
When using a `lambda` to create a closure function and passing it to
`nursery.start_soon()` within a loop, the lambda function captures a
reference to the loop variable rather than its value. For example:
```python
# Problematic code
async with trio.open_nursery() as nursery:
for d in docs:
nursery.start_soon(lambda: doc_keyword_extraction(chat_mdl, d, topn))
```
In this pattern, when concurrent tasks begin execution, `d` has already
become the value after the loop ends (typically the last element),
causing all tasks to use the same data.
## Fix Solution
Changed the way concurrent tasks are created with `nursery.start_soon()`
by leveraging Trio's API design to directly pass the function and its
arguments separately:
```python
# Fixed code
async with trio.open_nursery() as nursery:
for d in docs:
nursery.start_soon(doc_keyword_extraction, chat_mdl, d, topn)
```
This way, each task uses the parameter values at the time of the
function call, rather than references captured through closures.
## Fixed Files
Fixed closure traps in the following files:
1. `rag/svr/task_executor.py`: 3 fixes, involving document keyword
extraction, question generation, and tag processing
2. `rag/raptor.py`: 1 fix, involving document summarization
3. `graphrag/utils.py`: 2 fixes, involving graph node and edge
processing
4. `graphrag/entity_resolution.py`: 2 fixes, involving entity resolution
and graph node merging
5. `graphrag/general/mind_map_extractor.py`: 2 fixes, involving document
processing
6. `graphrag/general/extractor.py`: 3 fixes, involving content
processing and graph node/edge merging
7. `graphrag/general/community_reports_extractor.py`: 1 fix, involving
community report extraction
## Potential Impact
This fix resolves a serious concurrency issue that could have caused:
- Data processing errors (processing duplicate data)
- Performance degradation (all tasks working on the same data)
- Inconsistent results (some data not being processed)
After the fix, all concurrent tasks should correctly process their
respective data, improving system correctness and reliability.
2025-04-18 18:00:20 +08:00
nursery . start_soon ( doc_question_proposal , chat_mdl , d , task [ " parser_config " ] [ " auto_questions " ] )
2025-02-26 15:21:14 +08:00
progress_callback ( msg = " Question generation {} chunks completed in {:.2f} s " . format ( len ( docs ) , timer ( ) - st ) )
2024-10-23 17:00:56 +08:00
2025-01-09 17:07:21 +08:00
if task [ " kb_parser_config " ] . get ( " tag_kb_ids " , [ ] ) :
progress_callback ( msg = " Start to tag for every chunk ... " )
kb_ids = task [ " kb_parser_config " ] [ " tag_kb_ids " ]
tenant_id = task [ " tenant_id " ]
topn_tags = task [ " kb_parser_config " ] . get ( " topn_tags " , 3 )
S = 1000
st = timer ( )
examples = [ ]
all_tags = get_tags_from_cache ( kb_ids )
if not all_tags :
2025-10-10 09:17:36 +08:00
all_tags = settings . retriever . all_tags_in_portion ( tenant_id , kb_ids , S )
2025-01-09 17:07:21 +08:00
set_tags_to_cache ( kb_ids , all_tags )
else :
all_tags = json . loads ( all_tags )
chat_mdl = LLMBundle ( task [ " tenant_id " ] , LLMType . CHAT , llm_name = task [ " llm_id " ] , lang = task [ " language " ] )
2025-02-26 15:21:14 +08:00
docs_to_tag = [ ]
2025-01-09 17:07:21 +08:00
for d in docs :
2025-07-15 17:19:27 +08:00
task_canceled = has_canceled ( task [ " id " ] )
2025-05-22 09:28:08 +08:00
if task_canceled :
progress_callback ( - 1 , msg = " Task has been canceled. " )
return
2025-10-10 09:17:36 +08:00
if settings . retriever . tag_content ( tenant_id , kb_ids , d , all_tags , topn_tags = topn_tags , S = S ) and len ( d [ TAG_FLD ] ) > 0 :
2025-01-09 17:07:21 +08:00
examples . append ( { " content " : d [ " content_with_weight " ] , TAG_FLD : d [ TAG_FLD ] } )
2025-02-26 15:21:14 +08:00
else :
docs_to_tag . append ( d )
async def doc_content_tagging ( chat_mdl , d , topn_tags ) :
2025-01-09 17:07:21 +08:00
cached = get_llm_cache ( chat_mdl . llm_name , d [ " content_with_weight " ] , all_tags , { " topn " : topn_tags } )
if not cached :
2025-02-26 15:21:14 +08:00
picked_examples = random . choices ( examples , k = 2 ) if len ( examples ) > 2 else examples
2025-03-19 17:30:47 +08:00
if not picked_examples :
picked_examples . append ( { " content " : " This is an example " , TAG_FLD : { ' example ' : 1 } } )
2025-03-03 18:59:49 +08:00
async with chat_limiter :
cached = await trio . to_thread . run_sync ( lambda : content_tagging ( chat_mdl , d [ " content_with_weight " ] , all_tags , picked_examples , topn = topn_tags ) )
2025-01-09 17:07:21 +08:00
if cached :
2025-01-23 17:26:20 +08:00
cached = json . dumps ( cached )
if cached :
set_llm_cache ( chat_mdl . llm_name , d [ " content_with_weight " ] , cached , all_tags , { " topn " : topn_tags } )
d [ TAG_FLD ] = json . loads ( cached )
2025-03-03 18:59:49 +08:00
async with trio . open_nursery ( ) as nursery :
for d in docs_to_tag :
fix(nursery): Fix Closure Trap Issues in Trio Concurrent Tasks (#7106)
## Problem Description
Multiple files in the RAGFlow project contain closure trap issues when
using lambda functions with `trio.open_nursery()`. This problem causes
concurrent tasks created in loops to reference the same variable,
resulting in all tasks processing the same data (the data from the last
iteration) rather than each task processing its corresponding data from
the loop.
## Issue Details
When using a `lambda` to create a closure function and passing it to
`nursery.start_soon()` within a loop, the lambda function captures a
reference to the loop variable rather than its value. For example:
```python
# Problematic code
async with trio.open_nursery() as nursery:
for d in docs:
nursery.start_soon(lambda: doc_keyword_extraction(chat_mdl, d, topn))
```
In this pattern, when concurrent tasks begin execution, `d` has already
become the value after the loop ends (typically the last element),
causing all tasks to use the same data.
## Fix Solution
Changed the way concurrent tasks are created with `nursery.start_soon()`
by leveraging Trio's API design to directly pass the function and its
arguments separately:
```python
# Fixed code
async with trio.open_nursery() as nursery:
for d in docs:
nursery.start_soon(doc_keyword_extraction, chat_mdl, d, topn)
```
This way, each task uses the parameter values at the time of the
function call, rather than references captured through closures.
## Fixed Files
Fixed closure traps in the following files:
1. `rag/svr/task_executor.py`: 3 fixes, involving document keyword
extraction, question generation, and tag processing
2. `rag/raptor.py`: 1 fix, involving document summarization
3. `graphrag/utils.py`: 2 fixes, involving graph node and edge
processing
4. `graphrag/entity_resolution.py`: 2 fixes, involving entity resolution
and graph node merging
5. `graphrag/general/mind_map_extractor.py`: 2 fixes, involving document
processing
6. `graphrag/general/extractor.py`: 3 fixes, involving content
processing and graph node/edge merging
7. `graphrag/general/community_reports_extractor.py`: 1 fix, involving
community report extraction
## Potential Impact
This fix resolves a serious concurrency issue that could have caused:
- Data processing errors (processing duplicate data)
- Performance degradation (all tasks working on the same data)
- Inconsistent results (some data not being processed)
After the fix, all concurrent tasks should correctly process their
respective data, improving system correctness and reliability.
2025-04-18 18:00:20 +08:00
nursery . start_soon ( doc_content_tagging , chat_mdl , d , topn_tags )
2025-02-26 15:21:14 +08:00
progress_callback ( msg = " Tagging {} chunks completed in {:.2f} s " . format ( len ( docs ) , timer ( ) - st ) )
2025-01-09 17:07:21 +08:00
2024-01-15 08:46:22 +08:00
return docs
2025-10-14 14:14:52 +08:00
def build_TOC ( task , docs , progress_callback ) :
progress_callback ( msg = " Start to generate table of content ... " )
chat_mdl = LLMBundle ( task [ " tenant_id " ] , LLMType . CHAT , llm_name = task [ " llm_id " ] , lang = task [ " language " ] )
docs = sorted ( docs , key = lambda d : (
d . get ( " page_num_int " , 0 ) [ 0 ] if isinstance ( d . get ( " page_num_int " , 0 ) , list ) else d . get ( " page_num_int " , 0 ) ,
d . get ( " top_int " , 0 ) [ 0 ] if isinstance ( d . get ( " top_int " , 0 ) , list ) else d . get ( " top_int " , 0 )
) )
toc : list [ dict ] = trio . run ( run_toc_from_text , [ d [ " content_with_weight " ] for d in docs ] , chat_mdl , progress_callback )
logging . info ( " ------------ T O C ------------- \n " + json . dumps ( toc , ensure_ascii = False , indent = ' ' ) )
ii = 0
while ii < len ( toc ) :
try :
idx = int ( toc [ ii ] [ " chunk_id " ] )
del toc [ ii ] [ " chunk_id " ]
toc [ ii ] [ " ids " ] = [ docs [ idx ] [ " id " ] ]
if ii == len ( toc ) - 1 :
break
for jj in range ( idx + 1 , int ( toc [ ii + 1 ] [ " chunk_id " ] ) + 1 ) :
toc [ ii ] [ " ids " ] . append ( docs [ jj ] [ " id " ] )
except Exception as e :
logging . exception ( e )
ii + = 1
if toc :
d = copy . deepcopy ( docs [ - 1 ] )
d [ " content_with_weight " ] = json . dumps ( toc , ensure_ascii = False )
d [ " toc_kwd " ] = " toc "
d [ " available_int " ] = 0
2025-10-16 12:47:24 +08:00
d [ " page_num_int " ] = [ 100000000 ]
2025-10-14 14:14:52 +08:00
d [ " id " ] = xxhash . xxh64 ( ( d [ " content_with_weight " ] + str ( d [ " doc_id " ] ) ) . encode ( " utf-8 " , " surrogatepass " ) ) . hexdigest ( )
return d
2024-11-12 14:59:41 +08:00
def init_kb ( row , vector_size : int ) :
2024-01-15 08:46:22 +08:00
idxnm = search . index_name ( row [ " tenant_id " ] )
2025-01-09 17:07:21 +08:00
return settings . docStoreConn . createIdx ( idxnm , row . get ( " kb_id " , " " ) , vector_size )
2024-01-15 08:46:22 +08:00
2025-03-03 18:59:49 +08:00
async def embedding ( docs , mdl , parser_config = None , callback = None ) :
2024-09-29 09:49:45 +08:00
if parser_config is None :
parser_config = { }
2024-12-05 14:51:19 +08:00
tts , cnts = [ ] , [ ]
for d in docs :
2024-12-11 19:23:59 +08:00
tts . append ( d . get ( " docnm_kwd " , " Title " ) )
2024-12-05 14:51:19 +08:00
c = " \n " . join ( d . get ( " question_kwd " , [ ] ) )
if not c :
c = d [ " content_with_weight " ]
c = re . sub ( r " </?(table|td|caption|tr|th)( [^<>] { 0,12})?> " , " " , c )
2024-12-31 14:31:31 +08:00
if not c :
c = " None "
2024-12-05 14:51:19 +08:00
cnts . append ( c )
2024-01-15 08:46:22 +08:00
tk_count = 0
2024-02-01 18:53:56 +08:00
if len ( tts ) == len ( cnts ) :
2025-03-03 18:59:49 +08:00
vts , c = await trio . to_thread . run_sync ( lambda : mdl . encode ( tts [ 0 : 1 ] ) )
2025-01-15 15:20:29 +08:00
tts = np . concatenate ( [ vts for _ in range ( len ( tts ) ) ] , axis = 0 )
tk_count + = c
2024-02-01 18:53:56 +08:00
2025-08-12 14:12:56 +08:00
@timeout ( 60 )
2025-08-05 19:24:34 +08:00
def batch_encode ( txts ) :
nonlocal mdl
return mdl . encode ( [ truncate ( c , mdl . max_length - 10 ) for c in txts ] )
2024-03-05 16:33:47 +08:00
cnts_ = np . array ( [ ] )
Feat: make document parsing and embedding batch sizes configurable via environment variables (#8266)
### Description
This PR introduces two new environment variables, `DOC_BULK_SIZE` and
`EMBEDDING_BATCH_SIZE`, to allow flexible tuning of batch sizes for
document parsing and embedding vectorization in RAGFlow. By making these
parameters configurable, users can optimize performance and resource
usage according to their hardware capabilities and workload
requirements.
### What problem does this PR solve?
Previously, the batch sizes for document parsing and embedding were
hardcoded, limiting the ability to adjust throughput and memory
consumption. This PR enables users to set these values via environment
variables (in `.env`, Helm chart, or directly in the deployment
environment), improving flexibility and scalability for both small and
large deployments.
- `DOC_BULK_SIZE`: Controls how many document chunks are processed in a
single batch during document parsing (default: 4).
- `EMBEDDING_BATCH_SIZE`: Controls how many text chunks are processed
in a single batch during embedding vectorization (default: 16).
This change updates the codebase, documentation, and configuration files
to reflect the new options.
### Type of change
- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
- [ ] Refactoring
- [x] Performance Improvement
- [ ] Other (please describe):
### Additional context
- Updated `.env`, `helm/values.yaml`, and documentation to describe
the new variables.
- Modified relevant code paths to use the environment variables instead
of hardcoded values.
- Users can now tune these parameters to achieve better throughput or
reduce memory usage as needed.
Before:
Default value:
<img width="643" alt="image"
src="https://github.com/user-attachments/assets/086e1173-18f3-419d-a0f5-68394f63866a"
/>
After:
10x:
<img width="777" alt="image"
src="https://github.com/user-attachments/assets/5722bbc0-0bcb-4536-b928-077031e550f1"
/>
2025-06-16 13:40:47 +08:00
for i in range ( 0 , len ( cnts ) , EMBEDDING_BATCH_SIZE ) :
2025-07-23 10:17:04 +08:00
async with embed_limiter :
2025-08-05 19:24:34 +08:00
vts , c = await trio . to_thread . run_sync ( lambda : batch_encode ( cnts [ i : i + EMBEDDING_BATCH_SIZE ] ) )
2024-03-27 11:33:46 +08:00
if len ( cnts_ ) == 0 :
cnts_ = vts
else :
cnts_ = np . concatenate ( ( cnts_ , vts ) , axis = 0 )
2024-03-05 12:08:41 +08:00
tk_count + = c
2024-03-27 11:33:46 +08:00
callback ( prog = 0.7 + 0.2 * ( i + 1 ) / len ( cnts ) , msg = " " )
2024-03-05 12:08:41 +08:00
cnts = cnts_
2025-07-04 12:41:28 +08:00
filename_embd_weight = parser_config . get ( " filename_embd_weight " , 0.1 ) # due to the db support none value
if not filename_embd_weight :
filename_embd_weight = 0.1
title_w = float ( filename_embd_weight )
2024-02-23 18:28:12 +08:00
vects = ( title_w * tts + ( 1 - title_w ) *
cnts ) if len ( tts ) == len ( cnts ) else cnts
2024-02-01 18:53:56 +08:00
2024-01-15 08:46:22 +08:00
assert len ( vects ) == len ( docs )
2024-11-12 14:59:41 +08:00
vector_size = 0
2024-01-15 08:46:22 +08:00
for i , d in enumerate ( docs ) :
2024-01-17 09:39:50 +08:00
v = vects [ i ] . tolist ( )
2024-11-12 14:59:41 +08:00
vector_size = len ( v )
2024-01-31 19:57:45 +08:00
d [ " q_ %d _vec " % len ( v ) ] = v
2024-11-12 14:59:41 +08:00
return tk_count , vector_size
2024-01-15 08:46:22 +08:00
2025-10-09 12:36:19 +08:00
async def run_dataflow ( task : dict ) :
task_start_ts = timer ( )
dataflow_id = task [ " dataflow_id " ]
doc_id = task [ " doc_id " ]
task_id = task [ " id " ]
task_dataset_id = task [ " kb_id " ]
if task [ " task_type " ] == " dataflow " :
e , cvs = UserCanvasService . get_by_id ( dataflow_id )
assert e , " User pipeline not found. "
dsl = cvs . dsl
else :
e , pipeline_log = PipelineOperationLogService . get_by_id ( dataflow_id )
assert e , " Pipeline log not found. "
dsl = pipeline_log . dsl
dataflow_id = pipeline_log . pipeline_id
pipeline = Pipeline ( dsl , tenant_id = task [ " tenant_id " ] , doc_id = doc_id , task_id = task_id , flow_id = dataflow_id )
chunks = await pipeline . run ( file = task [ " file " ] ) if task . get ( " file " ) else await pipeline . run ( )
if doc_id == CANVAS_DEBUG_DOC_ID :
return
if not chunks :
PipelineOperationLogService . create ( document_id = doc_id , pipeline_id = dataflow_id , task_type = PipelineTaskType . PARSE , dsl = str ( pipeline ) )
return
embedding_token_consumption = chunks . get ( " embedding_token_consumption " , 0 )
if chunks . get ( " chunks " ) :
chunks = copy . deepcopy ( chunks [ " chunks " ] )
elif chunks . get ( " json " ) :
chunks = copy . deepcopy ( chunks [ " json " ] )
elif chunks . get ( " markdown " ) :
chunks = [ { " text " : [ chunks [ " markdown " ] ] } ]
elif chunks . get ( " text " ) :
chunks = [ { " text " : [ chunks [ " text " ] ] } ]
elif chunks . get ( " html " ) :
chunks = [ { " text " : [ chunks [ " html " ] ] } ]
keys = [ k for o in chunks for k in list ( o . keys ( ) ) ]
if not any ( [ re . match ( r " q_[0-9]+_vec " , k ) for k in keys ] ) :
try :
set_progress ( task_id , prog = 0.82 , msg = " \n ------------------------------------- \n Start to embedding... " )
e , kb = KnowledgebaseService . get_by_id ( task [ " kb_id " ] )
embedding_id = kb . embd_id
embedding_model = LLMBundle ( task [ " tenant_id " ] , LLMType . EMBEDDING , llm_name = embedding_id )
@timeout ( 60 )
def batch_encode ( txts ) :
nonlocal embedding_model
return embedding_model . encode ( [ truncate ( c , embedding_model . max_length - 10 ) for c in txts ] )
vects = np . array ( [ ] )
texts = [ o . get ( " questions " , o . get ( " summary " , o [ " text " ] ) ) for o in chunks ]
delta = 0.20 / ( len ( texts ) / / EMBEDDING_BATCH_SIZE + 1 )
prog = 0.8
for i in range ( 0 , len ( texts ) , EMBEDDING_BATCH_SIZE ) :
async with embed_limiter :
vts , c = await trio . to_thread . run_sync ( lambda : batch_encode ( texts [ i : i + EMBEDDING_BATCH_SIZE ] ) )
if len ( vects ) == 0 :
vects = vts
else :
vects = np . concatenate ( ( vects , vts ) , axis = 0 )
embedding_token_consumption + = c
prog + = delta
if i % ( len ( texts ) / / EMBEDDING_BATCH_SIZE / 100 + 1 ) == 1 :
set_progress ( task_id , prog = prog , msg = f " { i + 1 } / { len ( texts ) / / EMBEDDING_BATCH_SIZE } " )
assert len ( vects ) == len ( chunks )
for i , ck in enumerate ( chunks ) :
v = vects [ i ] . tolist ( )
ck [ " q_ %d _vec " % len ( v ) ] = v
except Exception as e :
set_progress ( task_id , prog = - 1 , msg = f " [ERROR]: { e } " )
PipelineOperationLogService . create ( document_id = doc_id , pipeline_id = dataflow_id , task_type = PipelineTaskType . PARSE , dsl = str ( pipeline ) )
return
metadata = { }
def dict_update ( meta ) :
nonlocal metadata
if not meta :
return
if isinstance ( meta , str ) :
try :
meta = json_repair . loads ( meta )
except Exception :
logging . error ( " Meta data format error. " )
return
if not isinstance ( meta , dict ) :
return
for k , v in meta . items ( ) :
if isinstance ( v , list ) :
v = [ vv for vv in v if isinstance ( vv , str ) ]
if not v :
continue
if not isinstance ( v , list ) and not isinstance ( v , str ) :
continue
if k not in metadata :
metadata [ k ] = v
continue
if isinstance ( metadata [ k ] , list ) :
if isinstance ( v , list ) :
metadata [ k ] . extend ( v )
else :
metadata [ k ] . append ( v )
else :
metadata [ k ] = v
for ck in chunks :
ck [ " doc_id " ] = doc_id
ck [ " kb_id " ] = [ str ( task [ " kb_id " ] ) ]
ck [ " docnm_kwd " ] = task [ " name " ]
ck [ " create_time " ] = str ( datetime . now ( ) ) . replace ( " T " , " " ) [ : 19 ]
ck [ " create_timestamp_flt " ] = datetime . now ( ) . timestamp ( )
ck [ " id " ] = xxhash . xxh64 ( ( ck [ " text " ] + str ( ck [ " doc_id " ] ) ) . encode ( " utf-8 " ) ) . hexdigest ( )
if " questions " in ck :
if " question_tks " not in ck :
ck [ " question_kwd " ] = ck [ " questions " ] . split ( " \n " )
ck [ " question_tks " ] = rag_tokenizer . tokenize ( str ( ck [ " questions " ] ) )
del ck [ " questions " ]
if " keywords " in ck :
if " important_tks " not in ck :
ck [ " important_kwd " ] = ck [ " keywords " ] . split ( " , " )
ck [ " important_tks " ] = rag_tokenizer . tokenize ( str ( ck [ " keywords " ] ) )
del ck [ " keywords " ]
if " summary " in ck :
if " content_ltks " not in ck :
ck [ " content_ltks " ] = rag_tokenizer . tokenize ( str ( ck [ " summary " ] ) )
ck [ " content_sm_ltks " ] = rag_tokenizer . fine_grained_tokenize ( ck [ " content_ltks " ] )
del ck [ " summary " ]
if " metadata " in ck :
dict_update ( ck [ " metadata " ] )
del ck [ " metadata " ]
if " content_with_weight " not in ck :
ck [ " content_with_weight " ] = ck [ " text " ]
del ck [ " text " ]
if " positions " in ck :
add_positions ( ck , ck [ " positions " ] )
del ck [ " positions " ]
if metadata :
e , doc = DocumentService . get_by_id ( doc_id )
if e :
if isinstance ( doc . meta_fields , str ) :
doc . meta_fields = json . loads ( doc . meta_fields )
dict_update ( doc . meta_fields )
DocumentService . update_by_id ( doc_id , { " meta_fields " : metadata } )
2025-09-05 18:50:46 +08:00
2025-10-09 12:36:19 +08:00
start_ts = timer ( )
set_progress ( task_id , prog = 0.82 , msg = " [DOC Engine]: \n Start to index... " )
e = await insert_es ( task_id , task [ " tenant_id " ] , task [ " kb_id " ] , chunks , partial ( set_progress , task_id , 0 , 100000000 ) )
if not e :
PipelineOperationLogService . create ( document_id = doc_id , pipeline_id = dataflow_id , task_type = PipelineTaskType . PARSE , dsl = str ( pipeline ) )
return
2025-09-05 18:50:46 +08:00
2025-10-09 12:36:19 +08:00
time_cost = timer ( ) - start_ts
task_time_cost = timer ( ) - task_start_ts
set_progress ( task_id , prog = 1. , msg = " Indexing done ( {:.2f} s). Task done ( {:.2f} s) " . format ( time_cost , task_time_cost ) )
DocumentService . increment_chunk_num ( doc_id , task_dataset_id , embedding_token_consumption , len ( chunks ) , task_time_cost )
logging . info ( " [Done], chunks( {} ), token( {} ), elapsed: {:.2f} " . format ( len ( chunks ) , embedding_token_consumption , task_time_cost ) )
PipelineOperationLogService . create ( document_id = doc_id , pipeline_id = dataflow_id , task_type = PipelineTaskType . PARSE , dsl = str ( pipeline ) )
2025-09-05 18:50:46 +08:00
2025-07-15 09:36:45 +08:00
@timeout ( 3600 )
2025-10-09 12:36:19 +08:00
async def run_raptor_for_kb ( row , kb_parser_config , chat_mdl , embd_mdl , vector_size , callback = None , doc_ids = [ ] ) :
fake_doc_id = GRAPH_RAPTOR_FAKE_DOC_ID
raptor_config = kb_parser_config . get ( " raptor " , { } )
2024-05-23 14:31:16 +08:00
chunks = [ ]
2025-01-22 19:43:14 +08:00
vctr_nm = " q_ %d _vec " % vector_size
2025-10-09 12:36:19 +08:00
for doc_id in doc_ids :
2025-10-10 09:17:36 +08:00
for d in settings . retriever . chunk_list ( doc_id , row [ " tenant_id " ] , [ str ( row [ " kb_id " ] ) ] ,
2025-10-09 12:36:19 +08:00
fields = [ " content_with_weight " , vctr_nm ] ,
sort_by_position = True ) :
chunks . append ( ( d [ " content_with_weight " ] , np . array ( d [ vctr_nm ] ) ) )
2024-05-23 14:31:16 +08:00
raptor = Raptor (
2025-10-09 12:36:19 +08:00
raptor_config . get ( " max_cluster " , 64 ) ,
2024-05-23 14:31:16 +08:00
chat_mdl ,
embd_mdl ,
2025-10-09 12:36:19 +08:00
raptor_config [ " prompt " ] ,
raptor_config [ " max_token " ] ,
raptor_config [ " threshold " ] ,
2024-05-23 14:31:16 +08:00
)
original_length = len ( chunks )
2025-10-13 11:53:48 +08:00
chunks = await raptor ( chunks , kb_parser_config [ " raptor " ] [ " random_seed " ] , callback )
2024-05-23 14:31:16 +08:00
doc = {
2025-10-09 12:36:19 +08:00
" doc_id " : fake_doc_id ,
2024-05-23 14:31:16 +08:00
" kb_id " : [ str ( row [ " kb_id " ] ) ] ,
" docnm_kwd " : row [ " name " ] ,
" title_tks " : rag_tokenizer . tokenize ( row [ " name " ] )
}
2024-12-08 14:21:12 +08:00
if row [ " pagerank " ] :
2025-01-09 17:07:21 +08:00
doc [ PAGERANK_FLD ] = int ( row [ " pagerank " ] )
2024-05-23 14:31:16 +08:00
res = [ ]
tk_count = 0
for content , vctr in chunks [ original_length : ] :
d = copy . deepcopy ( doc )
2025-10-09 12:36:19 +08:00
d [ " id " ] = xxhash . xxh64 ( ( content + str ( fake_doc_id ) ) . encode ( " utf-8 " ) ) . hexdigest ( )
2024-11-15 14:43:55 +08:00
d [ " create_time " ] = str ( datetime . now ( ) ) . replace ( " T " , " " ) [ : 19 ]
d [ " create_timestamp_flt " ] = datetime . now ( ) . timestamp ( )
2024-05-23 14:31:16 +08:00
d [ vctr_nm ] = vctr . tolist ( )
d [ " content_with_weight " ] = content
d [ " content_ltks " ] = rag_tokenizer . tokenize ( content )
d [ " content_sm_ltks " ] = rag_tokenizer . fine_grained_tokenize ( d [ " content_ltks " ] )
res . append ( d )
tk_count + = num_tokens_from_string ( content )
2025-01-22 19:43:14 +08:00
return res , tk_count
2025-10-09 12:36:19 +08:00
async def delete_image ( kb_id , chunk_id ) :
try :
async with minio_limiter :
STORAGE_IMPL . delete ( kb_id , chunk_id )
except Exception :
logging . exception ( f " Deleting image of chunk { chunk_id } got exception " )
raise
async def insert_es ( task_id , task_tenant_id , task_dataset_id , chunks , progress_callback ) :
for b in range ( 0 , len ( chunks ) , DOC_BULK_SIZE ) :
doc_store_result = await trio . to_thread . run_sync ( lambda : settings . docStoreConn . insert ( chunks [ b : b + DOC_BULK_SIZE ] , search . index_name ( task_tenant_id ) , task_dataset_id ) )
task_canceled = has_canceled ( task_id )
if task_canceled :
progress_callback ( - 1 , msg = " Task has been canceled. " )
return
if b % 128 == 0 :
progress_callback ( prog = 0.8 + 0.1 * ( b + 1 ) / len ( chunks ) , msg = " " )
if doc_store_result :
error_message = f " Insert chunk error: { doc_store_result } , please check log file and Elasticsearch/Infinity status! "
progress_callback ( - 1 , msg = error_message )
raise Exception ( error_message )
chunk_ids = [ chunk [ " id " ] for chunk in chunks [ : b + DOC_BULK_SIZE ] ]
chunk_ids_str = " " . join ( chunk_ids )
try :
TaskService . update_chunk_ids ( task_id , chunk_ids_str )
except DoesNotExist :
logging . warning ( f " do_handle_task update_chunk_ids failed since task { task_id } is unknown. " )
doc_store_result = await trio . to_thread . run_sync ( lambda : settings . docStoreConn . delete ( { " id " : chunk_ids } , search . index_name ( task_tenant_id ) , task_dataset_id ) )
async with trio . open_nursery ( ) as nursery :
for chunk_id in chunk_ids :
nursery . start_soon ( delete_image , task_dataset_id , chunk_id )
progress_callback ( - 1 , msg = f " Chunk updates failed since task { task_id } is unknown. " )
return
return True
2025-10-14 14:14:52 +08:00
@timeout ( 60 * 60 * 3 , 1 )
2025-03-03 18:59:49 +08:00
async def do_handle_task ( task ) :
2025-10-09 12:36:19 +08:00
task_type = task . get ( " task_type " , " " )
if task_type == " dataflow " and task . get ( " doc_id " , " " ) == CANVAS_DEBUG_DOC_ID :
await run_dataflow ( task )
return
2024-12-01 17:03:00 +08:00
task_id = task [ " id " ]
task_from_page = task [ " from_page " ]
task_to_page = task [ " to_page " ]
task_tenant_id = task [ " tenant_id " ]
task_embedding_id = task [ " embd_id " ]
task_language = task [ " language " ]
task_llm_id = task [ " llm_id " ]
task_dataset_id = task [ " kb_id " ]
task_doc_id = task [ " doc_id " ]
task_document_name = task [ " name " ]
task_parser_config = task [ " parser_config " ]
2025-03-03 18:59:49 +08:00
task_start_ts = timer ( )
2025-10-14 14:14:52 +08:00
toc_thread = None
executor = concurrent . futures . ThreadPoolExecutor ( )
2024-12-01 17:03:00 +08:00
# prepare the progress callback function
progress_callback = partial ( set_progress , task_id , task_from_page , task_to_page )
2024-12-12 16:38:03 +08:00
2025-01-10 16:39:13 +08:00
# FIXME: workaround, Infinity doesn't support table parsing method, this check is to notify user
lower_case_doc_engine = settings . DOC_ENGINE . lower ( )
if lower_case_doc_engine == ' infinity ' and task [ ' parser_id ' ] . lower ( ) == ' table ' :
error_message = " Table parsing method is not supported by Infinity, please use other parsing methods or use Elasticsearch as the document engine. "
progress_callback ( - 1 , msg = error_message )
raise Exception ( error_message )
2025-07-15 17:19:27 +08:00
task_canceled = has_canceled ( task_id )
2024-12-12 16:38:03 +08:00
if task_canceled :
progress_callback ( - 1 , msg = " Task has been canceled. " )
return
2024-11-15 18:51:09 +08:00
try :
2024-12-01 17:03:00 +08:00
# bind embedding model
embedding_model = LLMBundle ( task_tenant_id , LLMType . EMBEDDING , llm_name = task_embedding_id , lang = task_language )
2025-02-28 17:52:38 +08:00
vts , _ = embedding_model . encode ( [ " ok " ] )
vector_size = len ( vts [ 0 ] )
2024-11-15 18:51:09 +08:00
except Exception as e :
2024-12-01 22:28:00 +08:00
error_message = f ' Fail to bind embedding model: { str ( e ) } '
progress_callback ( - 1 , msg = error_message )
logging . exception ( error_message )
2024-11-15 18:51:09 +08:00
raise
2024-12-01 17:03:00 +08:00
2025-01-22 19:43:14 +08:00
init_kb ( task , vector_size )
2025-10-09 12:36:19 +08:00
if task_type [ : len ( " dataflow " ) ] == " dataflow " :
await run_dataflow ( task )
2025-09-05 18:50:46 +08:00
return
2025-10-09 12:36:19 +08:00
if task_type == " raptor " :
ok , kb = KnowledgebaseService . get_by_id ( task_dataset_id )
if not ok :
progress_callback ( prog = - 1.0 , msg = " Cannot found valid knowledgebase for RAPTOR task " )
return
kb_parser_config = kb . parser_config
if not kb_parser_config . get ( " raptor " , { } ) . get ( " use_raptor " , False ) :
2025-10-13 11:53:48 +08:00
kb_parser_config . update (
{
" raptor " : {
" use_raptor " : True ,
" prompt " : " Please summarize the following paragraphs. Be careful with the numbers, do not make things up. Paragraphs as following: \n {cluster_content} \n The above is the content you need to summarize. " ,
" max_token " : 256 ,
" threshold " : 0.1 ,
" max_cluster " : 64 ,
" random_seed " : 0 ,
} ,
}
)
if not KnowledgebaseService . update_by_id ( kb . id , { " parser_config " : kb_parser_config } ) :
progress_callback ( prog = - 1.0 , msg = " Internal error: Invalid RAPTOR configuration " )
return
2025-03-03 18:59:49 +08:00
# bind LLM for raptor
chat_model = LLMBundle ( task_tenant_id , LLMType . CHAT , llm_name = task_llm_id , lang = task_language )
# run RAPTOR
2025-05-27 17:41:35 +08:00
async with kg_limiter :
2025-10-09 12:36:19 +08:00
chunks , token_count = await run_raptor_for_kb (
row = task ,
kb_parser_config = kb_parser_config ,
chat_mdl = chat_model ,
embd_mdl = embedding_model ,
vector_size = vector_size ,
callback = progress_callback ,
doc_ids = task . get ( " doc_ids " , [ ] ) ,
)
2025-01-22 19:43:14 +08:00
# Either using graphrag or Standard chunking methods
2025-09-05 18:50:46 +08:00
elif task_type == " graphrag " :
2025-10-09 12:36:19 +08:00
ok , kb = KnowledgebaseService . get_by_id ( task_dataset_id )
if not ok :
progress_callback ( prog = - 1.0 , msg = " Cannot found valid knowledgebase for GraphRAG task " )
return
kb_parser_config = kb . parser_config
if not kb_parser_config . get ( " graphrag " , { } ) . get ( " use_graphrag " , False ) :
2025-10-13 11:53:48 +08:00
kb_parser_config . update (
{
" graphrag " : {
" use_graphrag " : True ,
" entity_types " : [
" organization " ,
" person " ,
" geo " ,
" event " ,
" category " ,
] ,
" method " : " light " ,
}
}
)
if not KnowledgebaseService . update_by_id ( kb . id , { " parser_config " : kb_parser_config } ) :
progress_callback ( prog = - 1.0 , msg = " Internal error: Invalid GraphRAG configuration " )
return
2025-10-09 12:36:19 +08:00
graphrag_conf = kb_parser_config . get ( " graphrag " , { } )
2025-01-22 19:43:14 +08:00
start_ts = timer ( )
2025-03-03 18:59:49 +08:00
chat_model = LLMBundle ( task_tenant_id , LLMType . CHAT , llm_name = task_llm_id , lang = task_language )
2025-03-10 15:15:06 +08:00
with_resolution = graphrag_conf . get ( " resolution " , False )
with_community = graphrag_conf . get ( " community " , False )
2025-05-27 11:16:29 +08:00
async with kg_limiter :
2025-10-09 12:36:19 +08:00
# await run_graphrag(task, task_language, with_resolution, with_community, chat_model, embedding_model, progress_callback)
result = await run_graphrag_for_kb (
row = task ,
doc_ids = task . get ( " doc_ids " , [ ] ) ,
language = task_language ,
kb_parser_config = kb_parser_config ,
chat_model = chat_model ,
embedding_model = embedding_model ,
callback = progress_callback ,
with_resolution = with_resolution ,
with_community = with_community ,
)
logging . info ( f " GraphRAG task result for task { task } : \n { result } " )
2025-03-10 15:15:06 +08:00
progress_callback ( prog = 1.0 , msg = " Knowledge Graph done ( {:.2f} s) " . format ( timer ( ) - start_ts ) )
2025-01-22 19:43:14 +08:00
return
2025-10-09 12:36:19 +08:00
elif task_type == " mindmap " :
progress_callback ( 1 , " place holder " )
pass
return
2024-11-15 18:51:09 +08:00
else :
2024-12-01 17:03:00 +08:00
# Standard chunking methods
start_ts = timer ( )
2025-03-03 18:59:49 +08:00
chunks = await build_chunks ( task , progress_callback )
2024-12-01 17:03:00 +08:00
logging . info ( " Build document {} : {:.2f} s " . format ( task_document_name , timer ( ) - start_ts ) )
if not chunks :
progress_callback ( 1. , msg = f " No chunk built from { task_document_name } " )
2024-11-15 18:51:09 +08:00
return
2024-12-01 17:03:00 +08:00
progress_callback ( msg = " Generate {} chunks " . format ( len ( chunks ) ) )
start_ts = timer ( )
2024-11-15 18:51:09 +08:00
try :
2025-03-03 18:59:49 +08:00
token_count , vector_size = await embedding ( chunks , embedding_model , task_parser_config , progress_callback )
2024-11-15 18:51:09 +08:00
except Exception as e :
2024-12-01 22:28:00 +08:00
error_message = " Generate embedding error: {} " . format ( str ( e ) )
progress_callback ( - 1 , error_message )
logging . exception ( error_message )
token_count = 0
2024-11-15 18:51:09 +08:00
raise
2024-12-01 22:28:00 +08:00
progress_message = " Embedding chunks ( {:.2f} s) " . format ( timer ( ) - start_ts )
logging . info ( progress_message )
progress_callback ( msg = progress_message )
2025-10-14 14:14:52 +08:00
if task [ " parser_id " ] . lower ( ) == " naive " and task [ " parser_config " ] . get ( " toc_extraction " , False ) :
toc_thread = executor . submit ( build_TOC , task , chunks , progress_callback )
2024-12-12 16:38:03 +08:00
2024-12-01 17:03:00 +08:00
chunk_count = len ( set ( [ chunk [ " id " ] for chunk in chunks ] ) )
start_ts = timer ( )
2025-10-09 12:36:19 +08:00
e = await insert_es ( task_id , task_tenant_id , task_dataset_id , chunks , progress_callback )
if not e :
return
2025-07-15 17:19:45 +08:00
2025-01-09 17:07:21 +08:00
logging . info ( " Indexing doc( {} ), page( {} - {} ), chunks( {} ), elapsed: {:.2f} " . format ( task_document_name , task_from_page ,
task_to_page , len ( chunks ) ,
timer ( ) - start_ts ) )
2024-11-15 18:51:09 +08:00
2024-12-01 22:28:00 +08:00
DocumentService . increment_chunk_num ( task_doc_id , task_dataset_id , token_count , chunk_count , 0 )
time_cost = timer ( ) - start_ts
2025-10-14 14:14:52 +08:00
progress_callback ( msg = " Indexing done ( {:.2f} s). " . format ( time_cost ) )
if toc_thread :
d = toc_thread . result ( )
if d :
e = await insert_es ( task_id , task_tenant_id , task_dataset_id , [ d ] , progress_callback )
if not e :
return
DocumentService . increment_chunk_num ( task_doc_id , task_dataset_id , 0 , 1 , 0 )
2025-03-03 18:59:49 +08:00
task_time_cost = timer ( ) - task_start_ts
2025-10-14 14:14:52 +08:00
progress_callback ( prog = 1.0 , msg = " Task done ( {:.2f} s) " . format ( task_time_cost ) )
2025-01-09 17:07:21 +08:00
logging . info (
" Chunk doc( {} ), page( {} - {} ), chunks( {} ), token( {} ), elapsed: {:.2f} " . format ( task_document_name , task_from_page ,
task_to_page , len ( chunks ) ,
2025-03-03 18:59:49 +08:00
token_count , task_time_cost ) )
2024-11-15 18:51:09 +08:00
2025-03-03 18:59:49 +08:00
async def handle_task ( ) :
global DONE_TASKS , FAILED_TASKS
redis_msg , task = await collect ( )
if not task :
2025-03-19 17:46:58 +08:00
await trio . sleep ( 5 )
2025-03-03 18:59:49 +08:00
return
2025-10-09 12:36:19 +08:00
task_type = task [ " task_type " ]
pipeline_task_type = TASK_TYPE_TO_PIPELINE_TASK_TYPE . get ( task_type , PipelineTaskType . PARSE ) or PipelineTaskType . PARSE
2025-03-03 18:59:49 +08:00
try :
logging . info ( f " handle_task begin for task { json . dumps ( task ) } " )
CURRENT_TASKS [ task [ " id " ] ] = copy . deepcopy ( task )
await do_handle_task ( task )
DONE_TASKS + = 1
CURRENT_TASKS . pop ( task [ " id " ] , None )
logging . info ( f " handle_task done for task { json . dumps ( task ) } " )
except Exception as e :
FAILED_TASKS + = 1
CURRENT_TASKS . pop ( task [ " id " ] , None )
2024-11-15 18:51:09 +08:00
try :
2025-03-10 15:15:06 +08:00
err_msg = str ( e )
while isinstance ( e , exceptiongroup . ExceptionGroup ) :
e = e . exceptions [ 0 ]
err_msg + = ' -- ' + str ( e )
set_progress ( task [ " id " ] , prog = - 1 , msg = f " [Exception]: { err_msg } " )
2025-03-03 18:59:49 +08:00
except Exception :
pass
logging . exception ( f " handle_task got exception for task { json . dumps ( task ) } " )
2025-10-09 12:36:19 +08:00
finally :
task_document_ids = [ ]
if task_type in [ " graphrag " , " raptor " , " mindmap " ] :
task_document_ids = task [ " doc_ids " ]
if not task . get ( " dataflow_id " , " " ) :
PipelineOperationLogService . record_pipeline_operation ( document_id = task [ " doc_id " ] , pipeline_id = " " , task_type = pipeline_task_type , fake_document_ids = task_document_ids )
2025-03-03 18:59:49 +08:00
redis_msg . ack ( )
async def report_status ( ) :
global CONSUMER_NAME , BOOT_AT , PENDING_TASKS , LAG_TASKS , DONE_TASKS , FAILED_TASKS
2024-11-15 14:43:55 +08:00
REDIS_CONN . sadd ( " TASKEXE " , CONSUMER_NAME )
2025-04-19 16:18:51 +08:00
redis_lock = RedisDistributedLock ( " clean_task_executor " , lock_value = CONSUMER_NAME , timeout = 60 )
2024-08-21 17:48:00 +08:00
while True :
try :
2024-11-15 14:43:55 +08:00
now = datetime . now ( )
2025-03-14 23:43:46 +08:00
group_info = REDIS_CONN . queue_info ( get_svr_queue_name ( 0 ) , SVR_CONSUMER_GROUP_NAME )
2024-11-15 18:51:09 +08:00
if group_info is not None :
2024-12-13 17:31:15 +08:00
PENDING_TASKS = int ( group_info . get ( " pending " , 0 ) )
LAG_TASKS = int ( group_info . get ( " lag " , 0 ) )
2024-11-15 14:43:55 +08:00
2025-03-03 18:59:49 +08:00
current = copy . deepcopy ( CURRENT_TASKS )
heartbeat = json . dumps ( {
" name " : CONSUMER_NAME ,
" now " : now . astimezone ( ) . isoformat ( timespec = " milliseconds " ) ,
" boot_at " : BOOT_AT ,
" pending " : PENDING_TASKS ,
" lag " : LAG_TASKS ,
" done " : DONE_TASKS ,
" failed " : FAILED_TASKS ,
" current " : current ,
} )
2024-11-15 14:43:55 +08:00
REDIS_CONN . zadd ( CONSUMER_NAME , heartbeat , now . timestamp ( ) )
logging . info ( f " { CONSUMER_NAME } reported heartbeat: { heartbeat } " )
2024-11-15 17:30:56 +08:00
expired = REDIS_CONN . zcount ( CONSUMER_NAME , 0 , now . timestamp ( ) - 60 * 30 )
2024-11-15 14:43:55 +08:00
if expired > 0 :
REDIS_CONN . zpopmin ( CONSUMER_NAME , expired )
2025-04-19 16:18:51 +08:00
# clean task executor
if redis_lock . acquire ( ) :
task_executors = REDIS_CONN . smembers ( " TASKEXE " )
for consumer_name in task_executors :
if consumer_name == CONSUMER_NAME :
continue
expired = REDIS_CONN . zcount (
consumer_name , now . timestamp ( ) - WORKER_HEARTBEAT_TIMEOUT , now . timestamp ( ) + 10
)
if expired == 0 :
logging . info ( f " { consumer_name } expired, removed " )
REDIS_CONN . srem ( " TASKEXE " , consumer_name )
REDIS_CONN . delete ( consumer_name )
2024-11-12 17:35:13 +08:00
except Exception :
2024-11-14 17:13:48 +08:00
logging . exception ( " report_status got exception " )
2025-04-24 11:44:34 +08:00
finally :
redis_lock . release ( )
2025-03-03 18:59:49 +08:00
await trio . sleep ( 30 )
2025-07-15 17:19:45 +08:00
2025-05-19 10:25:56 +08:00
async def task_manager ( ) :
2025-06-06 03:32:35 -03:00
try :
2025-05-19 10:25:56 +08:00
await handle_task ( )
2025-06-06 03:32:35 -03:00
finally :
task_limiter . release ( )
2025-04-19 16:18:51 +08:00
2025-03-03 18:59:49 +08:00
async def main ( ) :
2024-11-30 18:48:06 +08:00
logging . info ( r """
2025-10-22 09:29:20 +08:00
____ __ _
2025-10-21 09:38:20 +08:00
/ _ / ___ ____ ____ _____ / / _ ( _ ) ___ ____ ________ ______ _____ _____
/ / / __ \/ __ ` / _ \/ ___ / __ / / __ \/ __ \ / ___ / _ \/ ___ / | / / _ \/ ___ /
2025-10-22 09:29:20 +08:00
_ / / / / / / / _ / / __ ( __ ) / _ / / / _ / / / / / ( __ ) __ / / | | / / __ / /
/ ___ / _ / / _ / \__ , / \___ / ____ / \__ / _ / \____ / _ / / _ / / ____ / \___ / _ / | ___ / \___ / _ /
/ ____ /
2024-11-30 18:48:06 +08:00
""" )
2025-10-21 09:38:20 +08:00
logging . info ( f ' RAGFlow version: { get_ragflow_version ( ) } ' )
2024-11-15 22:55:41 +08:00
settings . init_settings ( )
2024-11-30 18:48:06 +08:00
print_rag_settings ( )
2025-03-12 09:43:18 +08:00
if sys . platform != " win32 " :
signal . signal ( signal . SIGUSR1 , start_tracemalloc_and_snapshot )
signal . signal ( signal . SIGUSR2 , stop_tracemalloc )
2025-02-24 16:21:55 +08:00
TRACE_MALLOC_ENABLED = int ( os . environ . get ( ' TRACE_MALLOC_ENABLED ' , " 0 " ) )
if TRACE_MALLOC_ENABLED :
start_tracemalloc_and_snapshot ( None , None )
2025-04-19 16:18:51 +08:00
signal . signal ( signal . SIGINT , signal_handler )
signal . signal ( signal . SIGTERM , signal_handler )
2025-03-03 18:59:49 +08:00
async with trio . open_nursery ( ) as nursery :
nursery . start_soon ( report_status )
2025-04-19 16:18:51 +08:00
while not stop_event . is_set ( ) :
2025-06-06 03:32:35 -03:00
await task_limiter . acquire ( )
2025-05-19 10:25:56 +08:00
nursery . start_soon ( task_manager )
2025-03-03 18:59:49 +08:00
logging . error ( " BUG!!! You should not reach here!!! " )
2024-11-30 18:48:06 +08:00
2024-11-15 18:51:09 +08:00
if __name__ == " __main__ " :
2025-03-13 14:37:59 +08:00
faulthandler . enable ( )
2025-06-18 09:41:09 +08:00
init_root_logger ( CONSUMER_NAME )
2025-03-03 18:59:49 +08:00
trio . run ( main )