mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-11-04 03:39:41 +00:00 
			
		
		
		
	
		
			
	
	
		
			76 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			76 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								#  Licensed under the Apache License, Version 2.0 (the "License");
							 | 
						||
| 
								 | 
							
								#  you may not use this file except in compliance with the License.
							 | 
						||
| 
								 | 
							
								#  You may obtain a copy of the License at
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								#      http://www.apache.org/licenses/LICENSE-2.0
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								#  Unless required by applicable law or agreed to in writing, software
							 | 
						||
| 
								 | 
							
								#  distributed under the License is distributed on an "AS IS" BASIS,
							 | 
						||
| 
								 | 
							
								#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
							 | 
						||
| 
								 | 
							
								#  See the License for the specific language governing permissions and
							 | 
						||
| 
								 | 
							
								#  limitations under the License.
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								from abc import ABC
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import pandas as pd
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								from api.db import LLMType
							 | 
						||
| 
								 | 
							
								from api.db.services.knowledgebase_service import KnowledgebaseService
							 | 
						||
| 
								 | 
							
								from api.db.services.llm_service import LLMBundle
							 | 
						||
| 
								 | 
							
								from api.settings import retrievaler
							 | 
						||
| 
								 | 
							
								from graph.component.base import ComponentBase, ComponentParamBase
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class CiteParam(ComponentParamBase):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Define the Retrieval component parameters.
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    def __init__(self):
							 | 
						||
| 
								 | 
							
								        super().__init__()
							 | 
						||
| 
								 | 
							
								        self.cite_sources = []
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def check(self):
							 | 
						||
| 
								 | 
							
								        self.check_empty(self.cite_source, "Please specify where you want to cite from.")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class Cite(ComponentBase, ABC):
							 | 
						||
| 
								 | 
							
								    component_name = "Cite"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def _run(self, history, **kwargs):
							 | 
						||
| 
								 | 
							
								        input = "\n- ".join(self.get_input()["content"])
							 | 
						||
| 
								 | 
							
								        sources = [self._canvas.get_component(cpn_id).output()[1] for cpn_id in self._param.cite_source]
							 | 
						||
| 
								 | 
							
								        query = []
							 | 
						||
| 
								 | 
							
								        for role, cnt in history[::-1][:self._param.message_history_window_size]:
							 | 
						||
| 
								 | 
							
								            if role != "user":continue
							 | 
						||
| 
								 | 
							
								            query.append(cnt)
							 | 
						||
| 
								 | 
							
								        query = "\n".join(query)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
							 | 
						||
| 
								 | 
							
								        if not kbs:
							 | 
						||
| 
								 | 
							
								            raise ValueError("Can't find knowledgebases by {}".format(self._param.kb_ids))
							 | 
						||
| 
								 | 
							
								        embd_nms = list(set([kb.embd_id for kb in kbs]))
							 | 
						||
| 
								 | 
							
								        assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        embd_mdl = LLMBundle(kbs[0].tenant_id, LLMType.EMBEDDING, embd_nms[0])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        rerank_mdl = None
							 | 
						||
| 
								 | 
							
								        if self._param.rerank_id:
							 | 
						||
| 
								 | 
							
								            rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        kbinfos = retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
							 | 
						||
| 
								 | 
							
								                                        1, self._param.top_n,
							 | 
						||
| 
								 | 
							
								                                        self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
							 | 
						||
| 
								 | 
							
								                                        aggs=False, rerank_mdl=rerank_mdl)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        if not kbinfos["chunks"]: return pd.DataFrame()
							 | 
						||
| 
								 | 
							
								        df = pd.DataFrame(kbinfos["chunks"])
							 | 
						||
| 
								 | 
							
								        df["content"] = df["content_with_weight"]
							 | 
						||
| 
								 | 
							
								        del df["content_with_weight"]
							 | 
						||
| 
								 | 
							
								        return df
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 |