ragflow/rag/app/qa.py

131 lines
4.7 KiB
Python
Raw Normal View History

import random
import re
from io import BytesIO
from nltk import word_tokenize
from openpyxl import load_workbook
from rag.parser import is_english, random_choices
from rag.nlp import huqie, stemmer
class Excel(object):
def __call__(self, fnm, binary=None, callback=None):
if not binary:
wb = load_workbook(fnm)
else:
wb = load_workbook(BytesIO(binary))
total = 0
for sheetname in wb.sheetnames:
total += len(list(wb[sheetname].rows))
res, fails = [], []
for sheetname in wb.sheetnames:
ws = wb[sheetname]
rows = list(ws.rows)
for i, r in enumerate(rows):
q, a = "", ""
for cell in r:
if not cell.value:
continue
if not q:
q = str(cell.value)
elif not a:
a = str(cell.value)
else:
break
if q and a:
res.append((q, a))
else:
fails.append(str(i + 1))
if len(res) % 999 == 0:
callback(len(res) *
0.6 /
total, ("Extract Q&A: {}".format(len(res)) +
(f"{len(fails)} failure, line: %s..." %
(",".join(fails[:3])) if fails else "")))
callback(0.6, ("Extract Q&A: {}. ".format(len(res)) + (
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
self.is_english = is_english(
[rmPrefix(q) for q, _ in random_choices(res, k=30) if len(q) > 1])
return res
def rmPrefix(txt):
return re.sub(
r"^(问题|答案|回答|user|assistant|Q|A|Question|Answer|问|答)[\t: ]+", "", txt.strip(), flags=re.IGNORECASE)
def beAdoc(d, q, a, eng):
qprefix = "Question: " if eng else "问题:"
aprefix = "Answer: " if eng else "回答:"
d["content_with_weight"] = "\t".join(
[qprefix + rmPrefix(q), aprefix + rmPrefix(a)])
if eng:
d["content_ltks"] = " ".join([stemmer.stem(w)
for w in word_tokenize(q)])
else:
d["content_ltks"] = huqie.qie(q)
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
return d
def chunk(filename, binary=None, callback=None, **kwargs):
"""
Excel and csv(txt) format files are supported.
If the file is in excel format, there should be 2 column question and answer without header.
And question column is ahead of answer column.
And it's O.K if it has multiple sheets as long as the columns are rightly composed.
If it's in csv format, it should be UTF-8 encoded. Use TAB as delimiter to separate question and answer.
All the deformed lines will be ignored.
Every pair of Q&A will be treated as a chunk.
"""
res = []
if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
excel_parser = Excel()
for q, a in excel_parser(filename, binary, callback):
res.append(beAdoc({}, q, a, excel_parser.is_english))
return res
elif re.search(r"\.(txt|csv)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
txt = ""
if binary:
txt = binary.decode("utf-8")
else:
with open(filename, "r") as f:
while True:
l = f.readline()
if not l:
break
txt += l
lines = txt.split("\n")
eng = is_english([rmPrefix(l) for l in lines[:100]])
fails = []
for i, line in enumerate(lines):
arr = [l for l in line.split("\t") if len(l) > 1]
if len(arr) != 2:
fails.append(str(i))
continue
res.append(beAdoc({}, arr[0], arr[1], eng))
if len(res) % 999 == 0:
callback(len(res) * 0.6 / len(lines), ("Extract Q&A: {}".format(len(res)) + (
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
callback(0.6, ("Extract Q&A: {}".format(len(res)) + (
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
return res
raise NotImplementedError(
"file type not supported yet(pptx, pdf supported)")
if __name__ == "__main__":
import sys
def dummy(a, b):
pass
chunk(sys.argv[1], callback=dummy)