A guide explaining how to build a RAGFlow Docker image from its source code. By following this guide, you'll be able to create a local Docker image that can be used for development, debugging, or testing purposes.
## Target Audience
- Developers who have added new features or modified the existing code and require a Docker image to view and debug their changes.
- While we also test RAGFlow on ARM64 platforms, we do not maintain RAGFlow Docker images for ARM. However, you can build an image yourself on a `linux/arm64` or `darwin/arm64` host machine as well.
- For ARM64 platforms, please upgrade the `xgboost` version in **pyproject.toml** to `1.6.0` and ensure **unixODBC** is properly installed.
- While we also test RAGFlow on ARM64 platforms, we do not maintain RAGFlow Docker images for ARM. However, you can build an image yourself on a `linux/arm64` or `darwin/arm64` host machine as well.
- For ARM64 platforms, please upgrade the `xgboost` version in **pyproject.toml** to `1.6.0` and ensure **unixODBC** is properly installed.
After building the infiniflow/ragflow:nightly-slim image, you are ready to launch a fully-functional RAGFlow service with all the required components, such as Elasticsearch, MySQL, MinIO, Redis, and more.
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.18.0-slim` to `infiniflow/ragflow:nightly-slim` to use the pre-built image.
$ docker compose -f docker-compose-macos.yml up -d
```
3. Access the RAGFlow Service
Once the setup is complete, open your web browser and navigate to http://127.0.0.1 or your server's \<IP_ADDRESS\>; (the default port is \<PORT\> = 80). You will be directed to the RAGFlow welcome page. Enjoy!🍻