Chatbot is one of the most common AI scenarios. However, effectively understanding user queries and responding appropriately remains a challenge. RAGFlow's general-purpose chatbot agent is our attempt to tackle this longstanding issue.
This chatbot closely resembles the chatbot introduced in [Start an AI chat](../start_chat.md), but with a key difference - it introduces a reflective mechanism that allows it to improve the retrieval from the target knowledge bases by rewriting the user's query.
This document provides guides on creating such a chatbot using our chatbot template.
## Prerequisites
1. Ensure you have properly set the LLM to use. See the guides on [Configure your API key](../llm_api_key_setup.md) or [Deploy a local LLM](../deploy_local_llm.mdx) for more information.
2. Ensure you have a knowledge base configured and the corresponding files properly parsed. See the guide on [Configure a knowledge base](../configure_knowledge_base.md) for more information.
- Function: Serves as the interface between human and the bot.
- Role: Acts as the downstream component of **Begin**.
- **Retrieval**
- Function: Retrieves information from specified knowledge base(s).
- Requirement: Must have `knowledgebases` set up to function.
- **Relevant**
- Function: Assesses the relevance of the retrieved information from the **Retrieval** component to the user query.
- Process:
- If relevant, it directs the data to the **Generate** component for final response generation.
- Otherwise, it triggers the **Rewrite** component to refine the user query and redo the retrival process.
- **Generate**
- Function: Prompts the LLM to generate responses based on the retrieved information.
- Note: The prompt settings allow you to control the way in which the LLM generates responses. Be sure to review the prompts and make necessary changes.
- **Rewrite**:
- Function: Refines a user query when no relevant information from the knowledge base is retrieved.
- Usage: Often used in conjunction with **Relevant** and **Retrieval** to create a reflective/feedback loop.