2024-03-11 16:19:03 +08:00
< div align = "center" >
2024-03-27 09:53:42 +08:00
< a href = "https://demo.ragflow.io/" >
2024-03-11 16:19:03 +08:00
< img src = "https://github.com/infiniflow/ragflow/assets/12318111/f034fb27-b3bf-401b-b213-e1dfa7448d2a" width = "320" alt = "ragflow logo" >
< / a >
< / div >
2024-02-28 15:01:12 +08:00
2024-03-11 16:19:03 +08:00
< p align = "center" >
< a href = "./README.md" > English< / a > |
< a href = "./README_zh.md" > 简体中文< / a >
< / p >
2024-02-28 15:01:12 +08:00
2024-03-11 16:19:03 +08:00
< p align = "center" >
2024-03-27 09:53:42 +08:00
< a href = "https://demo.ragflow.io" target = "_blank" >
2024-03-11 16:19:03 +08:00
< img alt = "Static Badge" src = "https://img.shields.io/badge/RAGFLOW-LLM-white?&labelColor=dd0af7" > < / a >
< a href = "https://hub.docker.com/r/infiniflow/ragflow" target = "_blank" >
< img src = "https://img.shields.io/badge/docker_pull-ragflow:v1.0-brightgreen"
alt="docker pull ragflow:v1.0">< / a >
< a href = "https://github.com/infiniflow/ragflow/blob/main/LICENSE" >
< img height = "21" src = "https://img.shields.io/badge/License-Apache--2.0-ffffff?style=flat-square&labelColor=d4eaf7&color=7d09f1" alt = "license" >
< / a >
< / p >
2024-03-29 09:51:36 +08:00
2024-03-31 15:07:12 +08:00
## 💡 What is RAGFlow?
2024-03-28 17:22:02 +08:00
2024-03-31 15:07:12 +08:00
[RAGFlow ](http://demo.ragflow.io ) is a knowledge management platform built on custom-build document understanding engine and LLM, with reasoned and well-founded answers to your question. Clone this repository, you can deploy your own knowledge management platform to empower your business with AI.
2024-03-11 16:19:03 +08:00
2024-03-29 09:51:36 +08:00
## 🌟 Key Features
2024-03-31 15:07:12 +08:00
2024-03-28 17:22:02 +08:00
- 🍭**Custom-build document understanding engine.** Our deep learning engine is made according to the needs of analyzing and searching various type of documents in different domain.
2024-03-29 09:51:36 +08:00
- For documents from different domain for different purpose, the engine applies different analyzing and search strategy.
2024-03-11 16:19:03 +08:00
- Easily intervene and manipulate the data proccessing procedure when things goes beyond expectation.
- Multi-media document understanding is supported using OCR and multi-modal LLM.
2024-03-28 17:22:02 +08:00
- 🍭**State-of-the-art table structure and layout recognition.** Precisely extract and understand the document including table content. See [README. ](./deepdoc/README.md )
2024-03-11 16:19:03 +08:00
- For PDF files, layout and table structures including row, column and span of them are recognized.
- Put the table accrossing the pages together.
- Reconstruct the table structure components into html table.
- **Querying database dumped data are supported.** After uploading tables from any database, you can search any data records just by asking.
2024-03-28 17:22:02 +08:00
- You can now query a database using natural language instead of using SQL.
- The record number uploaded is not limited.
2024-03-11 16:19:03 +08:00
- **Reasoned and well-founded answers.** The cited document part in LLM's answer is provided and pointed out in the original document.
2024-03-28 17:22:02 +08:00
- The answers are based on retrieved result for which we apply vector-keyword hybrids search and re-rank.
2024-03-11 16:19:03 +08:00
- The part of document cited in the answer is presented in the most expressive way.
- For PDF file, the cited parts in document can be located in the original PDF.
2024-02-28 15:01:12 +08:00
2024-03-29 09:51:36 +08:00
## 🔎 System Architecture
2024-03-28 17:22:02 +08:00
2024-03-29 09:51:36 +08:00
< div align = "center" style = "margin-top:20px;margin-bottom:20px;" >
< img src = "https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width = "1000" / >
< / div >
2024-03-28 17:22:02 +08:00
## 🎬 Get Started
2024-03-11 16:19:03 +08:00
2024-03-29 09:51:36 +08:00
### 📝 Prerequisites
2024-03-11 16:19:03 +08:00
- CPU >= 2 cores
2024-03-28 17:22:02 +08:00
- RAM >= 8 GB
2024-03-31 15:07:12 +08:00
- Docker: If you have not installed Docker on your local machine (Windows, Mac, or Linux), see [Install Docker Engine ](https://docs.docker.com/engine/install/ ).
### Start up the server
1. Ensure `vm.max_map_count` > 65535:
> To check the value of `vm.max_map_count`:
>
> ```bash
> $ sysctl vm.max_map_count
> ```
>
> Reset `vm.max_map_count` to a value greater than 65535 if it is not.
>
> ```bash
> # In this case, we set it to 262144:
> $ sudo sysctl -w vm.max_map_count=262144
> ```
>
> This change will be reset after a system reboot. To ensure your change remains permanent, add or update the `vm.max_map_count` value in **/etc/sysctl.conf** accordingly:
>
> ```bash
> vm.max_map_count=262144
> ```
2. Clone the repo:
2024-03-29 09:51:36 +08:00
```bash
$ git clone https://github.com/infiniflow/ragflow.git
```
2024-02-28 15:01:12 +08:00
2024-03-31 15:07:12 +08:00
3. Build the pre-built Docker images and start up the server:
2024-03-29 09:51:36 +08:00
2024-03-31 13:15:42 +08:00
```bash
$ cd ragflow/docker
$ docker compose up -d
```
2024-03-11 16:19:03 +08:00
2024-03-31 13:15:42 +08:00
> The core image is about 15 GB in size and may take a while to load.
4. Check the server status after pulling all images and having Docker up and running:
```bash
2024-03-31 15:07:12 +08:00
$ docker logs -f ragflow-server
2024-03-31 13:15:42 +08:00
```
*The following output confirms a successful launch of the system:*
2024-02-29 18:53:02 +08:00
2024-03-28 17:22:02 +08:00
```bash
2024-02-29 18:53:02 +08:00
____ ______ __
/ __ \ ____ _ ____ _ / ____ // /____ _ __
/ /_/ // __ `// __ ` // /_ / // __ \| | /| / /
/ _, _ // /_/ // /_/ // __ / / // /_/ /| |/ |/ /
/_/ |_| \__,_/ \__, //_/ /_/ \____/ |__/|__/
/____/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://172.22.0.5:9380
INFO:werkzeug:Press CTRL+C to quit
```
2024-03-11 16:19:03 +08:00
2024-03-31 15:07:12 +08:00
5. In your web browser, enter the IP address of your server as prompted.
*The show is on!*
2024-03-27 09:53:42 +08:00
2024-03-28 19:15:16 +08:00
2024-03-28 17:22:02 +08:00
## 🔧 Configurations
2024-03-27 09:53:42 +08:00
2024-03-29 09:51:36 +08:00
> The default serving port is 80, if you want to change that, refer to the [docker-compose.yml](./docker-compose.yaml) and change the left part of `80:80`, say `66:80`.
2024-03-11 16:19:03 +08:00
If you need to change the default setting of the system when you deploy it. There several ways to configure it.
2024-03-28 17:22:02 +08:00
Please refer to this [README ](./docker/README.md ) to manually update the configuration.
2024-03-29 09:51:36 +08:00
Updates to system configurations require a system reboot to take effect *docker-compose up -d* again.
2024-03-11 16:19:03 +08:00
2024-03-28 17:22:02 +08:00
> If you want to change the basic setups, like port, password .etc., please refer to [.env](./docker/.env) before starting up the system.
2024-03-27 13:14:36 +08:00
2024-03-28 17:22:02 +08:00
> If you change anything in [.env](./docker/.env), please check [service_conf.yaml](./docker/service_conf.yaml) which is a configuration of the back-end service and should be consistent with [.env](./docker/.env).
2024-03-27 13:14:36 +08:00
2024-03-31 15:07:12 +08:00
## 🛠️ Build from source
To build the Docker images from source:
```bash
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow/
$ docker build -t infiniflow/ragflow:v1.0 .
$ cd ragflow/docker
$ docker compose up -d
```
2024-03-28 17:22:02 +08:00
## 📜 Roadmap
2024-03-11 16:19:03 +08:00
2024-03-31 15:07:12 +08:00
See the [RAGFlow Roadmap 2024 ](https://github.com/infiniflow/ragflow/issues/162 )
2024-03-11 16:19:03 +08:00
2024-03-29 09:51:36 +08:00
## 🏄 Community
2024-03-11 16:19:03 +08:00
2024-03-28 17:22:02 +08:00
- [Discord ](https://discord.gg/uqQ4YMDf )
2024-03-29 09:51:36 +08:00
- [Twitter ](https://twitter.com/infiniflowai )
2024-03-11 16:19:03 +08:00
2024-03-28 17:22:02 +08:00
## 🙌 Contributing
2024-03-11 16:19:03 +08:00
2024-03-31 15:07:12 +08:00
RAGFlow flourishes via open-source collaboration. In this spirit, we embrace diverse contributions from the community. If you would like to be a part, review our [Contribution Guidelines ](https://github.com/infiniflow/ragflow/blob/main/CONTRIBUTING.md ) first.