| 
									
										
										
										
											2024-05-23 14:31:16 +08:00
										 |  |  | # | 
					
						
							|  |  |  | #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | #  Licensed under the Apache License, Version 2.0 (the "License"); | 
					
						
							|  |  |  | #  you may not use this file except in compliance with the License. | 
					
						
							|  |  |  | #  You may obtain a copy of the License at | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | #      http://www.apache.org/licenses/LICENSE-2.0 | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | #  Unless required by applicable law or agreed to in writing, software | 
					
						
							|  |  |  | #  distributed under the License is distributed on an "AS IS" BASIS, | 
					
						
							|  |  |  | #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
					
						
							|  |  |  | #  See the License for the specific language governing permissions and | 
					
						
							|  |  |  | #  limitations under the License. | 
					
						
							|  |  |  | # | 
					
						
							| 
									
										
										
										
											2024-11-14 17:13:48 +08:00
										 |  |  | import logging | 
					
						
							| 
									
										
										
										
											2024-05-23 14:31:16 +08:00
										 |  |  | import re | 
					
						
							|  |  |  | from concurrent.futures import ThreadPoolExecutor, ALL_COMPLETED, wait | 
					
						
							|  |  |  | from threading import Lock | 
					
						
							|  |  |  | import umap | 
					
						
							|  |  |  | import numpy as np | 
					
						
							|  |  |  | from sklearn.mixture import GaussianMixture | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-12-17 09:48:03 +08:00
										 |  |  | from graphrag.utils import get_llm_cache, get_embed_cache, set_embed_cache, set_llm_cache | 
					
						
							| 
									
										
										
										
											2024-11-12 17:35:13 +08:00
										 |  |  | from rag.utils import truncate | 
					
						
							| 
									
										
										
										
											2024-05-23 14:31:16 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval: | 
					
						
							| 
									
										
										
										
											2024-11-18 10:15:26 +08:00
										 |  |  |     def __init__(self, max_cluster, llm_model, embd_model, prompt, max_token=512, threshold=0.1): | 
					
						
							| 
									
										
										
										
											2024-05-23 14:31:16 +08:00
										 |  |  |         self._max_cluster = max_cluster | 
					
						
							|  |  |  |         self._llm_model = llm_model | 
					
						
							|  |  |  |         self._embd_model = embd_model | 
					
						
							|  |  |  |         self._threshold = threshold | 
					
						
							|  |  |  |         self._prompt = prompt | 
					
						
							|  |  |  |         self._max_token = max_token | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-12-17 09:48:03 +08:00
										 |  |  |     def _chat(self, system, history, gen_conf): | 
					
						
							|  |  |  |         response = get_llm_cache(self._llm_model.llm_name, system, history, gen_conf) | 
					
						
							|  |  |  |         if response: | 
					
						
							|  |  |  |             return response | 
					
						
							|  |  |  |         response = self._llm_model.chat(system, history, gen_conf) | 
					
						
							|  |  |  |         if response.find("**ERROR**") >= 0: | 
					
						
							|  |  |  |             raise Exception(response) | 
					
						
							|  |  |  |         set_llm_cache(self._llm_model.llm_name, system, response, history, gen_conf) | 
					
						
							|  |  |  |         return response | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def _embedding_encode(self, txt): | 
					
						
							|  |  |  |         response = get_embed_cache(self._embd_model.llm_name, txt) | 
					
						
							|  |  |  |         if response: | 
					
						
							|  |  |  |             return response | 
					
						
							|  |  |  |         embds, _ = self._embd_model.encode([txt]) | 
					
						
							|  |  |  |         if len(embds) < 1 or len(embds[0]) < 1: | 
					
						
							|  |  |  |             raise Exception("Embedding error: ") | 
					
						
							|  |  |  |         embds = embds[0] | 
					
						
							|  |  |  |         set_embed_cache(self._embd_model.llm_name, txt, embds) | 
					
						
							|  |  |  |         return embds | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-11-29 11:55:41 +08:00
										 |  |  |     def _get_optimal_clusters(self, embeddings: np.ndarray, random_state: int): | 
					
						
							| 
									
										
										
										
											2024-05-23 14:31:16 +08:00
										 |  |  |         max_clusters = min(self._max_cluster, len(embeddings)) | 
					
						
							|  |  |  |         n_clusters = np.arange(1, max_clusters) | 
					
						
							|  |  |  |         bics = [] | 
					
						
							|  |  |  |         for n in n_clusters: | 
					
						
							|  |  |  |             gm = GaussianMixture(n_components=n, random_state=random_state) | 
					
						
							|  |  |  |             gm.fit(embeddings) | 
					
						
							|  |  |  |             bics.append(gm.bic(embeddings)) | 
					
						
							|  |  |  |         optimal_clusters = n_clusters[np.argmin(bics)] | 
					
						
							|  |  |  |         return optimal_clusters | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-11-29 11:55:41 +08:00
										 |  |  |     def __call__(self, chunks, random_state, callback=None): | 
					
						
							| 
									
										
										
										
											2024-05-23 14:31:16 +08:00
										 |  |  |         layers = [(0, len(chunks))] | 
					
						
							|  |  |  |         start, end = 0, len(chunks) | 
					
						
							| 
									
										
										
										
											2024-12-08 14:21:12 +08:00
										 |  |  |         if len(chunks) <= 1: | 
					
						
							|  |  |  |             return | 
					
						
							| 
									
										
										
										
											2024-10-16 16:10:24 +08:00
										 |  |  |         chunks = [(s, a) for s, a in chunks if len(a) > 0] | 
					
						
							| 
									
										
										
										
											2024-05-23 14:31:16 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         def summarize(ck_idx, lock): | 
					
						
							|  |  |  |             nonlocal chunks | 
					
						
							|  |  |  |             try: | 
					
						
							|  |  |  |                 texts = [chunks[i][0] for i in ck_idx] | 
					
						
							| 
									
										
										
										
											2024-11-29 11:55:41 +08:00
										 |  |  |                 len_per_chunk = int((self._llm_model.max_length - self._max_token) / len(texts)) | 
					
						
							| 
									
										
										
										
											2024-05-23 14:31:16 +08:00
										 |  |  |                 cluster_content = "\n".join([truncate(t, max(1, len_per_chunk)) for t in texts]) | 
					
						
							| 
									
										
										
										
											2024-12-17 09:48:03 +08:00
										 |  |  |                 cnt = self._chat("You're a helpful assistant.", | 
					
						
							| 
									
										
										
										
											2024-11-29 11:55:41 +08:00
										 |  |  |                                            [{"role": "user", | 
					
						
							|  |  |  |                                              "content": self._prompt.format(cluster_content=cluster_content)}], | 
					
						
							|  |  |  |                                            {"temperature": 0.3, "max_tokens": self._max_token} | 
					
						
							|  |  |  |                                            ) | 
					
						
							|  |  |  |                 cnt = re.sub("(······\n由于长度的原因,回答被截断了,要继续吗?|For the content length reason, it stopped, continue?)", "", | 
					
						
							|  |  |  |                              cnt) | 
					
						
							| 
									
										
										
										
											2024-11-14 17:13:48 +08:00
										 |  |  |                 logging.debug(f"SUM: {cnt}") | 
					
						
							| 
									
										
										
										
											2024-05-23 14:31:16 +08:00
										 |  |  |                 embds, _ = self._embd_model.encode([cnt]) | 
					
						
							|  |  |  |                 with lock: | 
					
						
							| 
									
										
										
										
											2024-12-17 09:48:03 +08:00
										 |  |  |                     chunks.append((cnt, self._embedding_encode(cnt))) | 
					
						
							| 
									
										
										
										
											2024-05-23 14:31:16 +08:00
										 |  |  |             except Exception as e: | 
					
						
							| 
									
										
										
										
											2024-11-14 17:13:48 +08:00
										 |  |  |                 logging.exception("summarize got exception") | 
					
						
							| 
									
										
										
										
											2024-05-23 14:31:16 +08:00
										 |  |  |                 return e | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         labels = [] | 
					
						
							|  |  |  |         while end - start > 1: | 
					
						
							|  |  |  |             embeddings = [embd for _, embd in chunks[start: end]] | 
					
						
							|  |  |  |             if len(embeddings) == 2: | 
					
						
							| 
									
										
										
										
											2024-11-29 11:55:41 +08:00
										 |  |  |                 summarize([start, start + 1], Lock()) | 
					
						
							| 
									
										
										
										
											2024-05-23 14:31:16 +08:00
										 |  |  |                 if callback: | 
					
						
							| 
									
										
										
										
											2024-11-29 11:55:41 +08:00
										 |  |  |                     callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end)) | 
					
						
							|  |  |  |                 labels.extend([0, 0]) | 
					
						
							| 
									
										
										
										
											2024-05-23 14:31:16 +08:00
										 |  |  |                 layers.append((end, len(chunks))) | 
					
						
							|  |  |  |                 start = end | 
					
						
							|  |  |  |                 end = len(chunks) | 
					
						
							|  |  |  |                 continue | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             n_neighbors = int((len(embeddings) - 1) ** 0.8) | 
					
						
							|  |  |  |             reduced_embeddings = umap.UMAP( | 
					
						
							| 
									
										
										
										
											2024-11-29 11:55:41 +08:00
										 |  |  |                 n_neighbors=max(2, n_neighbors), n_components=min(12, len(embeddings) - 2), metric="cosine" | 
					
						
							| 
									
										
										
										
											2024-05-23 14:31:16 +08:00
										 |  |  |             ).fit_transform(embeddings) | 
					
						
							|  |  |  |             n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state) | 
					
						
							|  |  |  |             if n_clusters == 1: | 
					
						
							|  |  |  |                 lbls = [0 for _ in range(len(reduced_embeddings))] | 
					
						
							|  |  |  |             else: | 
					
						
							|  |  |  |                 gm = GaussianMixture(n_components=n_clusters, random_state=random_state) | 
					
						
							|  |  |  |                 gm.fit(reduced_embeddings) | 
					
						
							|  |  |  |                 probs = gm.predict_proba(reduced_embeddings) | 
					
						
							|  |  |  |                 lbls = [np.where(prob > self._threshold)[0] for prob in probs] | 
					
						
							| 
									
										
										
										
											2024-05-27 11:01:20 +08:00
										 |  |  |                 lbls = [lbl[0] if isinstance(lbl, np.ndarray) else lbl for lbl in lbls] | 
					
						
							| 
									
										
										
										
											2024-05-23 14:31:16 +08:00
										 |  |  |             lock = Lock() | 
					
						
							|  |  |  |             with ThreadPoolExecutor(max_workers=12) as executor: | 
					
						
							|  |  |  |                 threads = [] | 
					
						
							|  |  |  |                 for c in range(n_clusters): | 
					
						
							| 
									
										
										
										
											2024-11-29 11:55:41 +08:00
										 |  |  |                     ck_idx = [i + start for i in range(len(lbls)) if lbls[i] == c] | 
					
						
							| 
									
										
										
										
											2024-05-23 14:31:16 +08:00
										 |  |  |                     threads.append(executor.submit(summarize, ck_idx, lock)) | 
					
						
							|  |  |  |                 wait(threads, return_when=ALL_COMPLETED) | 
					
						
							| 
									
										
										
										
											2024-11-14 17:13:48 +08:00
										 |  |  |                 logging.debug(str([t.result() for t in threads])) | 
					
						
							| 
									
										
										
										
											2024-05-23 14:31:16 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |             assert len(chunks) - end == n_clusters, "{} vs. {}".format(len(chunks) - end, n_clusters) | 
					
						
							|  |  |  |             labels.extend(lbls) | 
					
						
							|  |  |  |             layers.append((end, len(chunks))) | 
					
						
							|  |  |  |             if callback: | 
					
						
							| 
									
										
										
										
											2024-11-29 11:55:41 +08:00
										 |  |  |                 callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end)) | 
					
						
							| 
									
										
										
										
											2024-05-23 14:31:16 +08:00
										 |  |  |             start = end | 
					
						
							|  |  |  |             end = len(chunks) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-11-29 11:55:41 +08:00
										 |  |  |         return chunks | 
					
						
							|  |  |  | 
 |