Feat: add fault-tolerant mechanism to RAPTOR (#11206)

### What problem does this PR solve?

Add fault-tolerant mechanism to RAPTOR.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
Yongteng Lei 2025-11-13 18:48:07 +08:00 committed by GitHub
parent 70a0f081f6
commit 908450509f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 86 additions and 149 deletions

View File

@ -3,15 +3,9 @@ import os
import threading
from typing import Any, Callable
import requests
from common.data_source.config import DocumentSource
from common.data_source.google_util.constant import GOOGLE_SCOPES
GOOGLE_DEVICE_CODE_URL = "https://oauth2.googleapis.com/device/code"
GOOGLE_DEVICE_TOKEN_URL = "https://oauth2.googleapis.com/token"
DEFAULT_DEVICE_INTERVAL = 5
def _get_requested_scopes(source: DocumentSource) -> list[str]:
"""Return the scopes to request, honoring an optional override env var."""
@ -55,62 +49,6 @@ def _run_with_timeout(func: Callable[[], Any], timeout_secs: int, timeout_messag
return result.get("value")
def _extract_client_info(credentials: dict[str, Any]) -> tuple[str, str | None]:
if "client_id" in credentials:
return credentials["client_id"], credentials.get("client_secret")
for key in ("installed", "web"):
if key in credentials and isinstance(credentials[key], dict):
nested = credentials[key]
if "client_id" not in nested:
break
return nested["client_id"], nested.get("client_secret")
raise ValueError("Provided Google OAuth credentials are missing client_id.")
def start_device_authorization_flow(
credentials: dict[str, Any],
source: DocumentSource,
) -> tuple[dict[str, Any], dict[str, Any]]:
client_id, client_secret = _extract_client_info(credentials)
data = {
"client_id": client_id,
"scope": " ".join(_get_requested_scopes(source)),
}
if client_secret:
data["client_secret"] = client_secret
resp = requests.post(GOOGLE_DEVICE_CODE_URL, data=data, timeout=15)
resp.raise_for_status()
payload = resp.json()
state = {
"client_id": client_id,
"client_secret": client_secret,
"device_code": payload.get("device_code"),
"interval": payload.get("interval", DEFAULT_DEVICE_INTERVAL),
}
response_data = {
"user_code": payload.get("user_code"),
"verification_url": payload.get("verification_url") or payload.get("verification_uri"),
"verification_url_complete": payload.get("verification_url_complete")
or payload.get("verification_uri_complete"),
"expires_in": payload.get("expires_in"),
"interval": state["interval"],
}
return state, response_data
def poll_device_authorization_flow(state: dict[str, Any]) -> dict[str, Any]:
data = {
"client_id": state["client_id"],
"device_code": state["device_code"],
"grant_type": "urn:ietf:params:oauth:grant-type:device_code",
}
if state.get("client_secret"):
data["client_secret"] = state["client_secret"]
resp = requests.post(GOOGLE_DEVICE_TOKEN_URL, data=data, timeout=20)
resp.raise_for_status()
return resp.json()
def _run_local_server_flow(client_config: dict[str, Any], source: DocumentSource) -> dict[str, Any]:
"""Launch the standard Google OAuth local-server flow to mint user tokens."""
from google_auth_oauthlib.flow import InstalledAppFlow # type: ignore
@ -125,10 +63,7 @@ def _run_local_server_flow(client_config: dict[str, Any], source: DocumentSource
preferred_port = os.environ.get("GOOGLE_OAUTH_LOCAL_SERVER_PORT")
port = int(preferred_port) if preferred_port else 0
timeout_secs = _get_oauth_timeout_secs()
timeout_message = (
f"Google OAuth verification timed out after {timeout_secs} seconds. "
"Close any pending consent windows and rerun the connector configuration to try again."
)
timeout_message = f"Google OAuth verification timed out after {timeout_secs} seconds. Close any pending consent windows and rerun the connector configuration to try again."
print("Launching Google OAuth flow. A browser window should open shortly.")
print("If it does not, copy the URL shown in the console into your browser manually.")
@ -153,11 +88,8 @@ def _run_local_server_flow(client_config: dict[str, Any], source: DocumentSource
instructions = [
"Google rejected one or more of the requested OAuth scopes.",
"Fix options:",
" 1. In Google Cloud Console, open APIs & Services > OAuth consent screen and add the missing scopes "
" (Drive metadata + Admin Directory read scopes), then re-run the flow.",
" 1. In Google Cloud Console, open APIs & Services > OAuth consent screen and add the missing scopes (Drive metadata + Admin Directory read scopes), then re-run the flow.",
" 2. Set GOOGLE_OAUTH_SCOPE_OVERRIDE to a comma-separated list of scopes you are allowed to request.",
" 3. For quick local testing only, export OAUTHLIB_RELAX_TOKEN_SCOPE=1 to accept the reduced scopes "
" (be aware the connector may lose functionality).",
]
raise RuntimeError("\n".join(instructions)) from warning
raise
@ -184,8 +116,6 @@ def ensure_oauth_token_dict(credentials: dict[str, Any], source: DocumentSource)
client_config = {"web": credentials["web"]}
if client_config is None:
raise ValueError(
"Provided Google OAuth credentials are missing both tokens and a client configuration."
)
raise ValueError("Provided Google OAuth credentials are missing both tokens and a client configuration.")
return _run_local_server_flow(client_config, source)

View File

@ -114,7 +114,7 @@ class Extractor:
async def extract_all(doc_id, chunks, max_concurrency=MAX_CONCURRENT_PROCESS_AND_EXTRACT_CHUNK, task_id=""):
out_results = []
error_count = 0
max_errors = 3
max_errors = int(os.environ.get("GRAPHRAG_MAX_ERRORS", 3))
limiter = trio.Semaphore(max_concurrency)

View File

@ -15,27 +15,35 @@
#
import logging
import re
import umap
import numpy as np
from sklearn.mixture import GaussianMixture
import trio
import umap
from sklearn.mixture import GaussianMixture
from api.db.services.task_service import has_canceled
from common.connection_utils import timeout
from common.exceptions import TaskCanceledException
from common.token_utils import truncate
from graphrag.utils import (
get_llm_cache,
chat_limiter,
get_embed_cache,
get_llm_cache,
set_embed_cache,
set_llm_cache,
chat_limiter,
)
from common.token_utils import truncate
class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
def __init__(
self, max_cluster, llm_model, embd_model, prompt, max_token=512, threshold=0.1
self,
max_cluster,
llm_model,
embd_model,
prompt,
max_token=512,
threshold=0.1,
max_errors=3,
):
self._max_cluster = max_cluster
self._llm_model = llm_model
@ -43,31 +51,35 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
self._threshold = threshold
self._prompt = prompt
self._max_token = max_token
self._max_errors = max(1, max_errors)
self._error_count = 0
@timeout(60*20)
@timeout(60 * 20)
async def _chat(self, system, history, gen_conf):
response = await trio.to_thread.run_sync(
lambda: get_llm_cache(self._llm_model.llm_name, system, history, gen_conf)
)
cached = await trio.to_thread.run_sync(lambda: get_llm_cache(self._llm_model.llm_name, system, history, gen_conf))
if cached:
return cached
if response:
return response
response = await trio.to_thread.run_sync(
lambda: self._llm_model.chat(system, history, gen_conf)
)
response = re.sub(r"^.*</think>", "", response, flags=re.DOTALL)
if response.find("**ERROR**") >= 0:
raise Exception(response)
await trio.to_thread.run_sync(
lambda: set_llm_cache(self._llm_model.llm_name, system, response, history, gen_conf)
)
return response
last_exc = None
for attempt in range(3):
try:
response = await trio.to_thread.run_sync(lambda: self._llm_model.chat(system, history, gen_conf))
response = re.sub(r"^.*</think>", "", response, flags=re.DOTALL)
if response.find("**ERROR**") >= 0:
raise Exception(response)
await trio.to_thread.run_sync(lambda: set_llm_cache(self._llm_model.llm_name, system, response, history, gen_conf))
return response
except Exception as exc:
last_exc = exc
logging.warning("RAPTOR LLM call failed on attempt %d/3: %s", attempt + 1, exc)
if attempt < 2:
await trio.sleep(1 + attempt)
raise last_exc if last_exc else Exception("LLM chat failed without exception")
@timeout(20)
async def _embedding_encode(self, txt):
response = await trio.to_thread.run_sync(
lambda: get_embed_cache(self._embd_model.llm_name, txt)
)
response = await trio.to_thread.run_sync(lambda: get_embed_cache(self._embd_model.llm_name, txt))
if response is not None:
return response
embds, _ = await trio.to_thread.run_sync(lambda: self._embd_model.encode([txt]))
@ -82,7 +94,6 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
n_clusters = np.arange(1, max_clusters)
bics = []
for n in n_clusters:
if task_id:
if has_canceled(task_id):
logging.info(f"Task {task_id} cancelled during get optimal clusters.")
@ -101,7 +112,7 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
layers = [(0, len(chunks))]
start, end = 0, len(chunks)
@timeout(60*20)
@timeout(60 * 20)
async def summarize(ck_idx: list[int]):
nonlocal chunks
@ -111,47 +122,50 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
raise TaskCanceledException(f"Task {task_id} was cancelled")
texts = [chunks[i][0] for i in ck_idx]
len_per_chunk = int(
(self._llm_model.max_length - self._max_token) / len(texts)
)
cluster_content = "\n".join(
[truncate(t, max(1, len_per_chunk)) for t in texts]
)
async with chat_limiter:
len_per_chunk = int((self._llm_model.max_length - self._max_token) / len(texts))
cluster_content = "\n".join([truncate(t, max(1, len_per_chunk)) for t in texts])
try:
async with chat_limiter:
if task_id and has_canceled(task_id):
logging.info(f"Task {task_id} cancelled before RAPTOR LLM call.")
raise TaskCanceledException(f"Task {task_id} was cancelled")
if task_id and has_canceled(task_id):
logging.info(f"Task {task_id} cancelled before RAPTOR LLM call.")
raise TaskCanceledException(f"Task {task_id} was cancelled")
cnt = await self._chat(
"You're a helpful assistant.",
[
{
"role": "user",
"content": self._prompt.format(cluster_content=cluster_content),
}
],
{"max_tokens": max(self._max_token, 512)}, # fix issue: #10235
)
cnt = re.sub(
"(······\n由于长度的原因,回答被截断了,要继续吗?|For the content length reason, it stopped, continue?)",
"",
cnt,
)
logging.debug(f"SUM: {cnt}")
cnt = await self._chat(
"You're a helpful assistant.",
[
{
"role": "user",
"content": self._prompt.format(
cluster_content=cluster_content
),
}
],
{"max_tokens": max(self._max_token, 512)}, # fix issue: #10235
)
cnt = re.sub(
"(······\n由于长度的原因,回答被截断了,要继续吗?|For the content length reason, it stopped, continue?)",
"",
cnt,
)
logging.debug(f"SUM: {cnt}")
if task_id and has_canceled(task_id):
logging.info(f"Task {task_id} cancelled before RAPTOR embedding.")
raise TaskCanceledException(f"Task {task_id} was cancelled")
if task_id and has_canceled(task_id):
logging.info(f"Task {task_id} cancelled before RAPTOR embedding.")
raise TaskCanceledException(f"Task {task_id} was cancelled")
embds = await self._embedding_encode(cnt)
chunks.append((cnt, embds))
embds = await self._embedding_encode(cnt)
chunks.append((cnt, embds))
except TaskCanceledException:
raise
except Exception as exc:
self._error_count += 1
warn_msg = f"[RAPTOR] Skip cluster ({len(ck_idx)} chunks) due to error: {exc}"
logging.warning(warn_msg)
if callback:
callback(msg=warn_msg)
if self._error_count >= self._max_errors:
raise RuntimeError(f"RAPTOR aborted after {self._error_count} errors. Last error: {exc}") from exc
labels = []
while end - start > 1:
if task_id:
if has_canceled(task_id):
logging.info(f"Task {task_id} cancelled during RAPTOR layer processing.")
@ -161,11 +175,7 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
if len(embeddings) == 2:
await summarize([start, start + 1])
if callback:
callback(
msg="Cluster one layer: {} -> {}".format(
end - start, len(chunks) - end
)
)
callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end))
labels.extend([0, 0])
layers.append((end, len(chunks)))
start = end
@ -199,17 +209,11 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
nursery.start_soon(summarize, ck_idx)
assert len(chunks) - end == n_clusters, "{} vs. {}".format(
len(chunks) - end, n_clusters
)
assert len(chunks) - end == n_clusters, "{} vs. {}".format(len(chunks) - end, n_clusters)
labels.extend(lbls)
layers.append((end, len(chunks)))
if callback:
callback(
msg="Cluster one layer: {} -> {}".format(
end - start, len(chunks) - end
)
)
callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end))
start = end
end = len(chunks)

View File

@ -649,6 +649,8 @@ async def run_raptor_for_kb(row, kb_parser_config, chat_mdl, embd_mdl, vector_si
res = []
tk_count = 0
max_errors = int(os.environ.get("RAPTOR_MAX_ERRORS", 3))
async def generate(chunks, did):
nonlocal tk_count, res
raptor = Raptor(
@ -658,6 +660,7 @@ async def run_raptor_for_kb(row, kb_parser_config, chat_mdl, embd_mdl, vector_si
raptor_config["prompt"],
raptor_config["max_token"],
raptor_config["threshold"],
max_errors=max_errors,
)
original_length = len(chunks)
chunks = await raptor(chunks, kb_parser_config["raptor"]["random_seed"], callback, row["id"])