# # Copyright 2025 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import asyncio import json import logging import os import random import re import time from abc import ABC from copy import deepcopy from http import HTTPStatus from typing import Any, Protocol from urllib.parse import urljoin import json_repair import openai import requests from dashscope import Generation from ollama import Client from openai import OpenAI from openai.lib.azure import AzureOpenAI from zhipuai import ZhipuAI from rag.nlp import is_chinese, is_english from rag.utils import num_tokens_from_string # Error message constants ERROR_PREFIX = "**ERROR**" ERROR_RATE_LIMIT = "RATE_LIMIT_EXCEEDED" ERROR_AUTHENTICATION = "AUTH_ERROR" ERROR_INVALID_REQUEST = "INVALID_REQUEST" ERROR_SERVER = "SERVER_ERROR" ERROR_TIMEOUT = "TIMEOUT" ERROR_CONNECTION = "CONNECTION_ERROR" ERROR_MODEL = "MODEL_ERROR" ERROR_CONTENT_FILTER = "CONTENT_FILTERED" ERROR_QUOTA = "QUOTA_EXCEEDED" ERROR_MAX_RETRIES = "MAX_RETRIES_EXCEEDED" ERROR_GENERIC = "GENERIC_ERROR" LENGTH_NOTIFICATION_CN = "······\n由于大模型的上下文窗口大小限制,回答已经被大模型截断。" LENGTH_NOTIFICATION_EN = "...\nThe answer is truncated by your chosen LLM due to its limitation on context length." class ToolCallSession(Protocol): def tool_call(self, name: str, arguments: dict[str, Any]) -> str: ... class Base(ABC): def __init__(self, key, model_name, base_url, **kwargs): timeout = int(os.environ.get("LM_TIMEOUT_SECONDS", 600)) self.client = OpenAI(api_key=key, base_url=base_url, timeout=timeout) self.model_name = model_name # Configure retry parameters self.max_retries = kwargs.get("max_retries", int(os.environ.get("LLM_MAX_RETRIES", 5))) self.base_delay = kwargs.get("retry_interval", float(os.environ.get("LLM_BASE_DELAY", 2.0))) self.max_rounds = kwargs.get("max_rounds", 5) self.is_tools = False def _get_delay(self): """Calculate retry delay time""" return self.base_delay + random.uniform(0, 0.5) def _classify_error(self, error): """Classify error based on error message content""" error_str = str(error).lower() if "rate limit" in error_str or "429" in error_str or "tpm limit" in error_str or "too many requests" in error_str or "requests per minute" in error_str: return ERROR_RATE_LIMIT elif "auth" in error_str or "key" in error_str or "apikey" in error_str or "401" in error_str or "forbidden" in error_str or "permission" in error_str: return ERROR_AUTHENTICATION elif "invalid" in error_str or "bad request" in error_str or "400" in error_str or "format" in error_str or "malformed" in error_str or "parameter" in error_str: return ERROR_INVALID_REQUEST elif "server" in error_str or "502" in error_str or "503" in error_str or "504" in error_str or "500" in error_str or "unavailable" in error_str: return ERROR_SERVER elif "timeout" in error_str or "timed out" in error_str: return ERROR_TIMEOUT elif "connect" in error_str or "network" in error_str or "unreachable" in error_str or "dns" in error_str: return ERROR_CONNECTION elif "quota" in error_str or "capacity" in error_str or "credit" in error_str or "billing" in error_str or "limit" in error_str and "rate" not in error_str: return ERROR_QUOTA elif "filter" in error_str or "content" in error_str or "policy" in error_str or "blocked" in error_str or "safety" in error_str or "inappropriate" in error_str: return ERROR_CONTENT_FILTER elif "model" in error_str or "not found" in error_str or "does not exist" in error_str or "not available" in error_str: return ERROR_MODEL else: return ERROR_GENERIC def _clean_conf(self, gen_conf): if "max_tokens" in gen_conf: del gen_conf["max_tokens"] return gen_conf def _chat(self, history, gen_conf): response = self.client.chat.completions.create(model=self.model_name, messages=history, **gen_conf) if any([not response.choices, not response.choices[0].message, not response.choices[0].message.content]): return "", 0 ans = response.choices[0].message.content.strip() if response.choices[0].finish_reason == "length": if is_chinese(ans): ans += LENGTH_NOTIFICATION_CN else: ans += LENGTH_NOTIFICATION_EN return ans, self.total_token_count(response) def _length_stop(self, ans): if is_chinese([ans]): return ans + LENGTH_NOTIFICATION_CN return ans + LENGTH_NOTIFICATION_EN def _exceptions(self, e, attempt): logging.exception("OpenAI cat_with_tools") # Classify the error error_code = self._classify_error(e) # Check if it's a rate limit error or server error and not the last attempt should_retry = (error_code == ERROR_RATE_LIMIT or error_code == ERROR_SERVER) and attempt < self.max_retries if should_retry: delay = self._get_delay() logging.warning(f"Error: {error_code}. Retrying in {delay:.2f} seconds... (Attempt {attempt + 1}/{self.max_retries})") time.sleep(delay) else: # For non-rate limit errors or the last attempt, return an error message if attempt == self.max_retries: error_code = ERROR_MAX_RETRIES return f"{ERROR_PREFIX}: {error_code} - {str(e)}" def bind_tools(self, toolcall_session, tools): if not (toolcall_session and tools): return self.is_tools = True self.toolcall_session = toolcall_session self.tools = tools def chat_with_tools(self, system: str, history: list, gen_conf: dict): gen_conf = self._clean_conf() if system: history.insert(0, {"role": "system", "content": system}) ans = "" tk_count = 0 hist = deepcopy(history) # Implement exponential backoff retry strategy for attempt in range(self.max_retries+1): history = hist for _ in range(self.max_rounds*2): try: response = self.client.chat.completions.create(model=self.model_name, messages=history, tools=self.tools, **gen_conf) tk_count += self.total_token_count(response) if any([not response.choices, not response.choices[0].message, not response.choices[0].message.content]): raise Exception("500 response structure error.") if not hasattr(response.choices[0].message, "tool_calls") or not response.choices[0].message.tool_calls: if hasattr(response.choices[0].message, "reasoning_content") and response.choices[0].message.reasoning_content: ans += "" + response.choices[0].message.reasoning_content + "" ans += response.choices[0].message.content if response.choices[0].finish_reason == "length": ans = self._length_stop(ans) return ans, tk_count for tool_call in response.choices[0].message.tool_calls: name = tool_call.function.name try: args = json_repair.loads(tool_call.function.arguments) tool_response = self.toolcall_session.tool_call(name, args) history.append({"role": "tool", "tool_call_id": tool_call.id, "content": str(tool_response)}) except Exception as e: history.append({"role": "tool", "tool_call_id": tool_call.id, "content": f"Tool call error: \n{tool_call}\nException:\n" + str(e)}) except Exception as e: e = self._exceptions(e, attempt) if e: return e, tk_count assert False, "Shouldn't be here." def chat(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) gen_conf = self._clean_conf(gen_conf) # Implement exponential backoff retry strategy for attempt in range(self.max_retries+1): try: return self._chat(history, gen_conf) except Exception as e: e = self._exceptions(e, attempt) if e: return e, 0 assert False, "Shouldn't be here." def _wrap_toolcall_message(self, stream): final_tool_calls = {} for chunk in stream: for tool_call in chunk.choices[0].delta.tool_calls or []: index = tool_call.index if index not in final_tool_calls: final_tool_calls[index] = tool_call final_tool_calls[index].function.arguments += tool_call.function.arguments return final_tool_calls def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict): if "max_tokens" in gen_conf: del gen_conf["max_tokens"] tools = self.tools if system: history.insert(0, {"role": "system", "content": system}) total_tokens = 0 hist = deepcopy(history) # Implement exponential backoff retry strategy for attempt in range(self.max_retries+1): history = hist for _ in range(self.max_rounds*2): reasoning_start = False try: response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, tools=tools, **gen_conf) final_tool_calls = {} answer = "" for resp in response: if resp.choices[0].delta.tool_calls: for tool_call in resp.choices[0].delta.tool_calls or []: index = tool_call.index if index not in final_tool_calls: final_tool_calls[index] = tool_call else: final_tool_calls[index].function.arguments += tool_call.function.arguments continue if any([not resp.choices, not resp.choices[0].delta, not hasattr(resp.choices[0].delta, "content")]): raise Exception("500 response structure error.") if not resp.choices[0].delta.content: resp.choices[0].delta.content = "" if hasattr(resp.choices[0].delta, "reasoning_content") and resp.choices[0].delta.reasoning_content: ans = "" if not reasoning_start: reasoning_start = True ans = "" ans += resp.choices[0].delta.reasoning_content + "" yield ans else: reasoning_start = False answer += resp.choices[0].delta.content yield resp.choices[0].delta.content tol = self.total_token_count(resp) if not tol: total_tokens += num_tokens_from_string(resp.choices[0].delta.content) else: total_tokens += tol finish_reason = resp.choices[0].finish_reason if hasattr(resp.choices[0], "finish_reason") else "" if finish_reason == "length": yield self._length_stop("") if answer: yield total_tokens return for tool_call in final_tool_calls.values(): name = tool_call.function.name try: args = json_repair.loads(tool_call.function.arguments) tool_response = self.toolcall_session.tool_call(name, args) history.append( { "role": "assistant", "tool_calls": [ { "index": tool_call.index, "id": tool_call.id, "function": { "name": tool_call.function.name, "arguments": tool_call.function.arguments, }, "type": "function", }, ], } ) history.append({"role": "tool", "tool_call_id": tool_call.id, "content": str(tool_response)}) except Exception as e: logging.exception(msg=f"Wrong JSON argument format in LLM tool call response: {tool_call}") history.append({"role": "tool", "tool_call_id": tool_call.id, "content": f"Tool call error: \n{tool_call}\nException:\n" + str(e)}) except Exception as e: e = self._exceptions(e, attempt) if e: yield total_tokens return assert False, "Shouldn't be here." def chat_streamly(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) if "max_tokens" in gen_conf: del gen_conf["max_tokens"] ans = "" total_tokens = 0 reasoning_start = False try: response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf) for resp in response: if not resp.choices: continue if not resp.choices[0].delta.content: resp.choices[0].delta.content = "" if hasattr(resp.choices[0].delta, "reasoning_content") and resp.choices[0].delta.reasoning_content: ans = "" if not reasoning_start: reasoning_start = True ans = "" ans += resp.choices[0].delta.reasoning_content + "" else: reasoning_start = False ans = resp.choices[0].delta.content tol = self.total_token_count(resp) if not tol: total_tokens += num_tokens_from_string(resp.choices[0].delta.content) else: total_tokens += tol if resp.choices[0].finish_reason == "length": if is_chinese(ans): ans += LENGTH_NOTIFICATION_CN else: ans += LENGTH_NOTIFICATION_EN yield ans except openai.APIError as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens def total_token_count(self, resp): try: return resp.usage.total_tokens except Exception: pass try: return resp["usage"]["total_tokens"] except Exception: pass return 0 def _calculate_dynamic_ctx(self, history): """Calculate dynamic context window size""" def count_tokens(text): """Calculate token count for text""" # Simple calculation: 1 token per ASCII character # 2 tokens for non-ASCII characters (Chinese, Japanese, Korean, etc.) total = 0 for char in text: if ord(char) < 128: # ASCII characters total += 1 else: # Non-ASCII characters (Chinese, Japanese, Korean, etc.) total += 2 return total # Calculate total tokens for all messages total_tokens = 0 for message in history: content = message.get("content", "") # Calculate content tokens content_tokens = count_tokens(content) # Add role marker token overhead role_tokens = 4 total_tokens += content_tokens + role_tokens # Apply 1.2x buffer ratio total_tokens_with_buffer = int(total_tokens * 1.2) if total_tokens_with_buffer <= 8192: ctx_size = 8192 else: ctx_multiplier = (total_tokens_with_buffer // 8192) + 1 ctx_size = ctx_multiplier * 8192 return ctx_size class GptTurbo(Base): def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1", **kwargs): if not base_url: base_url = "https://api.openai.com/v1" super().__init__(key, model_name, base_url, **kwargs) class MoonshotChat(Base): def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1", **kwargs): if not base_url: base_url = "https://api.moonshot.cn/v1" super().__init__(key, model_name, base_url) class XinferenceChat(Base): def __init__(self, key=None, model_name="", base_url="", **kwargs): if not base_url: raise ValueError("Local llm url cannot be None") base_url = urljoin(base_url, "v1") super().__init__(key, model_name, base_url, **kwargs) class HuggingFaceChat(Base): def __init__(self, key=None, model_name="", base_url="", **kwargs): if not base_url: raise ValueError("Local llm url cannot be None") base_url = urljoin(base_url, "v1") super().__init__(key, model_name.split("___")[0], base_url, **kwargs) class ModelScopeChat(Base): def __init__(self, key=None, model_name="", base_url="", **kwargs): if not base_url: raise ValueError("Local llm url cannot be None") base_url = urljoin(base_url, "v1") super().__init__(key, model_name.split("___")[0], base_url, **kwargs) class DeepSeekChat(Base): def __init__(self, key, model_name="deepseek-chat", base_url="https://api.deepseek.com/v1", **kwargs): if not base_url: base_url = "https://api.deepseek.com/v1" super().__init__(key, model_name, base_url, **kwargs) class AzureChat(Base): def __init__(self, key, model_name, **kwargs): api_key = json.loads(key).get("api_key", "") api_version = json.loads(key).get("api_version", "2024-02-01") super().__init__(key, model_name, kwargs["base_url"], **kwargs) self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version) self.model_name = model_name class BaiChuanChat(Base): def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1", **kwargs): if not base_url: base_url = "https://api.baichuan-ai.com/v1" super().__init__(key, model_name, base_url, **kwargs) @staticmethod def _format_params(params): return { "temperature": params.get("temperature", 0.3), "top_p": params.get("top_p", 0.85), } def _clean_conf(self, gen_conf): return { "temperature": gen_conf.get("temperature", 0.3), "top_p": gen_conf.get("top_p", 0.85), } def _chat(self, history, gen_conf): response = self.client.chat.completions.create( model=self.model_name, messages=history, extra_body={"tools": [{"type": "web_search", "web_search": {"enable": True, "search_mode": "performance_first"}}]}, **gen_conf, ) ans = response.choices[0].message.content.strip() if response.choices[0].finish_reason == "length": if is_chinese([ans]): ans += LENGTH_NOTIFICATION_CN else: ans += LENGTH_NOTIFICATION_EN return ans, self.total_token_count(response) def chat_streamly(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) if "max_tokens" in gen_conf: del gen_conf["max_tokens"] ans = "" total_tokens = 0 try: response = self.client.chat.completions.create( model=self.model_name, messages=history, extra_body={"tools": [{"type": "web_search", "web_search": {"enable": True, "search_mode": "performance_first"}}]}, stream=True, **self._format_params(gen_conf), ) for resp in response: if not resp.choices: continue if not resp.choices[0].delta.content: resp.choices[0].delta.content = "" ans = resp.choices[0].delta.content tol = self.total_token_count(resp) if not tol: total_tokens += num_tokens_from_string(resp.choices[0].delta.content) else: total_tokens = tol if resp.choices[0].finish_reason == "length": if is_chinese([ans]): ans += LENGTH_NOTIFICATION_CN else: ans += LENGTH_NOTIFICATION_EN yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens class QWenChat(Base): def __init__(self, key, model_name=Generation.Models.qwen_turbo, base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) import dashscope dashscope.api_key = key self.model_name = model_name if self.is_reasoning_model(self.model_name) or self.model_name in ["qwen-vl-plus", "qwen-vl-plus-latest", "qwen-vl-max", "qwen-vl-max-latest"]: super().__init__(key, model_name, "https://dashscope.aliyuncs.com/compatible-mode/v1", **kwargs) def chat_with_tools(self, system: str, history: list, gen_conf: dict) -> tuple[str, int]: if "max_tokens" in gen_conf: del gen_conf["max_tokens"] # if self.is_reasoning_model(self.model_name): # return super().chat(system, history, gen_conf) stream_flag = str(os.environ.get("QWEN_CHAT_BY_STREAM", "true")).lower() == "true" if not stream_flag: from http import HTTPStatus tools = self.tools if system: history.insert(0, {"role": "system", "content": system}) response = Generation.call(self.model_name, messages=history, result_format="message", tools=tools, **gen_conf) ans = "" tk_count = 0 if response.status_code == HTTPStatus.OK: assistant_output = response.output.choices[0].message if not ans and "tool_calls" not in assistant_output and "reasoning_content" in assistant_output: ans += "" + ans + "" ans += response.output.choices[0].message.content if "tool_calls" not in assistant_output: tk_count += self.total_token_count(response) if response.output.choices[0].get("finish_reason", "") == "length": if is_chinese([ans]): ans += LENGTH_NOTIFICATION_CN else: ans += LENGTH_NOTIFICATION_EN return ans, tk_count tk_count += self.total_token_count(response) history.append(assistant_output) while "tool_calls" in assistant_output: tool_info = {"content": "", "role": "tool", "tool_call_id": assistant_output.tool_calls[0]["id"]} tool_name = assistant_output.tool_calls[0]["function"]["name"] if tool_name: arguments = json.loads(assistant_output.tool_calls[0]["function"]["arguments"]) tool_info["content"] = self.toolcall_session.tool_call(name=tool_name, arguments=arguments) history.append(tool_info) response = Generation.call(self.model_name, messages=history, result_format="message", tools=self.tools, **gen_conf) if response.output.choices[0].get("finish_reason", "") == "length": tk_count += self.total_token_count(response) if is_chinese([ans]): ans += LENGTH_NOTIFICATION_CN else: ans += LENGTH_NOTIFICATION_EN return ans, tk_count tk_count += self.total_token_count(response) assistant_output = response.output.choices[0].message if assistant_output.content is None: assistant_output.content = "" history.append(response) ans += assistant_output["content"] return ans, tk_count else: return "**ERROR**: " + response.message, tk_count else: result_list = [] for result in self._chat_streamly_with_tools(system, history, gen_conf, incremental_output=True): result_list.append(result) error_msg_list = [result for result in result_list if str(result).find("**ERROR**") >= 0] if len(error_msg_list) > 0: return "**ERROR**: " + "".join(error_msg_list), 0 else: return "".join(result_list[:-1]), result_list[-1] def _chat(self, history, gen_conf): if self.is_reasoning_model(self.model_name) or self.model_name in ["qwen-vl-plus", "qwen-vl-plus-latest", "qwen-vl-max", "qwen-vl-max-latest"]: return super()._chat(history, gen_conf) response = Generation.call(self.model_name, messages=history, result_format="message", **gen_conf) ans = "" tk_count = 0 if response.status_code == HTTPStatus.OK: ans += response.output.choices[0]["message"]["content"] tk_count += self.total_token_count(response) if response.output.choices[0].get("finish_reason", "") == "length": if is_chinese([ans]): ans += LENGTH_NOTIFICATION_CN else: ans += LENGTH_NOTIFICATION_EN return ans, tk_count return "**ERROR**: " + response.message, tk_count def _wrap_toolcall_message(self, old_message, message): if not old_message: return message tool_call_id = message["tool_calls"][0].get("id") if tool_call_id: old_message.tool_calls[0]["id"] = tool_call_id function = message.tool_calls[0]["function"] if function: if function.get("name"): old_message.tool_calls[0]["function"]["name"] = function["name"] if function.get("arguments"): old_message.tool_calls[0]["function"]["arguments"] += function["arguments"] return old_message def _chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict, incremental_output=True): from http import HTTPStatus if system: history.insert(0, {"role": "system", "content": system}) if "max_tokens" in gen_conf: del gen_conf["max_tokens"] ans = "" tk_count = 0 try: response = Generation.call(self.model_name, messages=history, result_format="message", tools=self.tools, stream=True, incremental_output=incremental_output, **gen_conf) tool_info = {"content": "", "role": "tool"} toolcall_message = None tool_name = "" tool_arguments = "" finish_completion = False reasoning_start = False while not finish_completion: for resp in response: if resp.status_code == HTTPStatus.OK: assistant_output = resp.output.choices[0].message ans = resp.output.choices[0].message.content if not ans and "tool_calls" not in assistant_output and "reasoning_content" in assistant_output: ans = resp.output.choices[0].message.reasoning_content if not reasoning_start: reasoning_start = True ans = "" + ans else: ans = ans + "" if "tool_calls" not in assistant_output: reasoning_start = False tk_count += self.total_token_count(resp) if resp.output.choices[0].get("finish_reason", "") == "length": if is_chinese([ans]): ans += LENGTH_NOTIFICATION_CN else: ans += LENGTH_NOTIFICATION_EN finish_reason = resp.output.choices[0]["finish_reason"] if finish_reason == "stop": finish_completion = True yield ans break yield ans continue tk_count += self.total_token_count(resp) toolcall_message = self._wrap_toolcall_message(toolcall_message, assistant_output) if "tool_calls" in assistant_output: tool_call_finish_reason = resp.output.choices[0]["finish_reason"] if tool_call_finish_reason == "tool_calls": try: tool_arguments = json.loads(toolcall_message.tool_calls[0]["function"]["arguments"]) except Exception as e: logging.exception(msg="_chat_streamly_with_tool tool call error") yield ans + "\n**ERROR**: " + str(e) finish_completion = True break tool_name = toolcall_message.tool_calls[0]["function"]["name"] history.append(toolcall_message) tool_info["content"] = self.toolcall_session.tool_call(name=tool_name, arguments=tool_arguments) history.append(tool_info) tool_info = {"content": "", "role": "tool"} tool_name = "" tool_arguments = "" toolcall_message = None response = Generation.call(self.model_name, messages=history, result_format="message", tools=self.tools, stream=True, incremental_output=incremental_output, **gen_conf) else: yield ( ans + "\n**ERROR**: " + resp.output.choices[0].message if not re.search(r" (key|quota)", str(resp.message).lower()) else "Out of credit. Please set the API key in **settings > Model providers.**" ) except Exception as e: logging.exception(msg="_chat_streamly_with_tool") yield ans + "\n**ERROR**: " + str(e) yield tk_count def _chat_streamly(self, system, history, gen_conf, incremental_output=True): from http import HTTPStatus if system: history.insert(0, {"role": "system", "content": system}) if "max_tokens" in gen_conf: del gen_conf["max_tokens"] ans = "" tk_count = 0 try: response = Generation.call(self.model_name, messages=history, result_format="message", stream=True, incremental_output=incremental_output, **gen_conf) for resp in response: if resp.status_code == HTTPStatus.OK: ans = resp.output.choices[0]["message"]["content"] tk_count = self.total_token_count(resp) if resp.output.choices[0].get("finish_reason", "") == "length": if is_chinese(ans): ans += LENGTH_NOTIFICATION_CN else: ans += LENGTH_NOTIFICATION_EN yield ans else: yield ( ans + "\n**ERROR**: " + resp.message if not re.search(r" (key|quota)", str(resp.message).lower()) else "Out of credit. Please set the API key in **settings > Model providers.**" ) except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield tk_count def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict, incremental_output=True): if "max_tokens" in gen_conf: del gen_conf["max_tokens"] for txt in self._chat_streamly_with_tools(system, history, gen_conf, incremental_output=incremental_output): yield txt def chat_streamly(self, system, history, gen_conf): if "max_tokens" in gen_conf: del gen_conf["max_tokens"] if self.is_reasoning_model(self.model_name) or self.model_name in ["qwen-vl-plus", "qwen-vl-plus-latest", "qwen-vl-max", "qwen-vl-max-latest"]: return super().chat_streamly(system, history, gen_conf) return self._chat_streamly(system, history, gen_conf) @staticmethod def is_reasoning_model(model_name: str) -> bool: return any( [ model_name.lower().find("deepseek") >= 0, model_name.lower().find("qwq") >= 0 and model_name.lower() != "qwq-32b-preview", ] ) class ZhipuChat(Base): def __init__(self, key, model_name="glm-3-turbo", base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) self.client = ZhipuAI(api_key=key) self.model_name = model_name def _clean_conf(self, gen_conf): if "max_tokens" in gen_conf: del gen_conf["max_tokens"] if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] return gen_conf def chat_with_tools(self, system: str, history: list, gen_conf: dict): if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] return super().chat_with_tools(system, history, gen_conf) def chat_streamly(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) if "max_tokens" in gen_conf: del gen_conf["max_tokens"] if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] ans = "" tk_count = 0 try: response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf) for resp in response: if not resp.choices[0].delta.content: continue delta = resp.choices[0].delta.content ans = delta if resp.choices[0].finish_reason == "length": if is_chinese(ans): ans += LENGTH_NOTIFICATION_CN else: ans += LENGTH_NOTIFICATION_EN tk_count = self.total_token_count(resp) if resp.choices[0].finish_reason == "stop": tk_count = self.total_token_count(resp) yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield tk_count def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict): if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] return super().chat_streamly_with_tools(system, history, gen_conf) class OllamaChat(Base): def __init__(self, key, model_name, base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) self.client = Client(host=kwargs["base_url"]) if not key or key == "x" else Client(host=kwargs["base_url"], headers={"Authorization": f"Bearer {key}"}) self.model_name = model_name def _clean_conf(self, gen_conf): options = {} if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"] for k in ["temperature", "top_p", "presence_penalty", "frequency_penalty"]: if k not in gen_conf: continue options[k] = gen_conf[k] return options def _chat(self, history, gen_conf): # Calculate context size ctx_size = self._calculate_dynamic_ctx(history) gen_conf["num_ctx"] = ctx_size response = self.client.chat(model=self.model_name, messages=history, options=gen_conf, keep_alive=-1) ans = response["message"]["content"].strip() token_count = response.get("eval_count", 0) + response.get("prompt_eval_count", 0) return ans, token_count def chat_streamly(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) if "max_tokens" in gen_conf: del gen_conf["max_tokens"] try: # Calculate context size ctx_size = self._calculate_dynamic_ctx(history) options = {"num_ctx": ctx_size} if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"] if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"] if "top_p" in gen_conf: options["top_p"] = gen_conf["top_p"] if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"] if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"] ans = "" try: response = self.client.chat(model=self.model_name, messages=history, stream=True, options=options, keep_alive=-1) for resp in response: if resp["done"]: token_count = resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0) yield token_count ans = resp["message"]["content"] yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield 0 except Exception as e: yield "**ERROR**: " + str(e) yield 0 class LocalAIChat(Base): def __init__(self, key, model_name, base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) if not base_url: raise ValueError("Local llm url cannot be None") base_url = urljoin(base_url, "v1") self.client = OpenAI(api_key="empty", base_url=base_url) self.model_name = model_name.split("___")[0] class LocalLLM(Base): def __init__(self, key, model_name, base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) from jina import Client self.client = Client(port=12345, protocol="grpc", asyncio=True) def _prepare_prompt(self, system, history, gen_conf): from rag.svr.jina_server import Prompt if system: history.insert(0, {"role": "system", "content": system}) return Prompt(message=history, gen_conf=gen_conf) def _stream_response(self, endpoint, prompt): from rag.svr.jina_server import Generation answer = "" try: res = self.client.stream_doc(on=endpoint, inputs=prompt, return_type=Generation) loop = asyncio.get_event_loop() try: while True: answer = loop.run_until_complete(res.__anext__()).text yield answer except StopAsyncIteration: pass except Exception as e: yield answer + "\n**ERROR**: " + str(e) yield num_tokens_from_string(answer) def chat(self, system, history, gen_conf): if "max_tokens" in gen_conf: del gen_conf["max_tokens"] prompt = self._prepare_prompt(system, history, gen_conf) chat_gen = self._stream_response("/chat", prompt) ans = next(chat_gen) total_tokens = next(chat_gen) return ans, total_tokens def chat_streamly(self, system, history, gen_conf): if "max_tokens" in gen_conf: del gen_conf["max_tokens"] prompt = self._prepare_prompt(system, history, gen_conf) return self._stream_response("/stream", prompt) class VolcEngineChat(Base): def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3", **kwargs): """ Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special, Assemble ark_api_key, ep_id into api_key, store it as a dictionary type, and parse it for use model_name is for display only """ base_url = base_url if base_url else "https://ark.cn-beijing.volces.com/api/v3" ark_api_key = json.loads(key).get("ark_api_key", "") model_name = json.loads(key).get("ep_id", "") + json.loads(key).get("endpoint_id", "") super().__init__(ark_api_key, model_name, base_url, **kwargs) class MiniMaxChat(Base): def __init__( self, key, model_name, base_url="https://api.minimax.chat/v1/text/chatcompletion_v2", **kwargs ): super().__init__(key, model_name, base_url=base_url, **kwargs) if not base_url: base_url = "https://api.minimax.chat/v1/text/chatcompletion_v2" self.base_url = base_url self.model_name = model_name self.api_key = key def _clean_conf(self, gen_conf): for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_tokens"]: del gen_conf[k] return gen_conf def _chat(self, history, gen_conf): headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json", } payload = json.dumps({"model": self.model_name, "messages": history, **gen_conf}) response = requests.request("POST", url=self.base_url, headers=headers, data=payload) response = response.json() ans = response["choices"][0]["message"]["content"].strip() if response["choices"][0]["finish_reason"] == "length": if is_chinese(ans): ans += LENGTH_NOTIFICATION_CN else: ans += LENGTH_NOTIFICATION_EN return ans, self.total_token_count(response) def chat_streamly(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_tokens"]: del gen_conf[k] ans = "" total_tokens = 0 try: headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json", } payload = json.dumps( { "model": self.model_name, "messages": history, "stream": True, **gen_conf, } ) response = requests.request( "POST", url=self.base_url, headers=headers, data=payload, ) for resp in response.text.split("\n\n")[:-1]: resp = json.loads(resp[6:]) text = "" if "choices" in resp and "delta" in resp["choices"][0]: text = resp["choices"][0]["delta"]["content"] ans = text tol = self.total_token_count(resp) if not tol: total_tokens += num_tokens_from_string(text) else: total_tokens = tol yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens class MistralChat(Base): def __init__(self, key, model_name, base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) from mistralai.client import MistralClient self.client = MistralClient(api_key=key) self.model_name = model_name def _clean_conf(self, gen_conf): for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_tokens"]: del gen_conf[k] return gen_conf def _chat(self, history, gen_conf): response = self.client.chat(model=self.model_name, messages=history, **gen_conf) ans = response.choices[0].message.content if response.choices[0].finish_reason == "length": if is_chinese(ans): ans += LENGTH_NOTIFICATION_CN else: ans += LENGTH_NOTIFICATION_EN return ans, self.total_token_count(response) def chat_streamly(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_tokens"]: del gen_conf[k] ans = "" total_tokens = 0 try: response = self.client.chat_stream(model=self.model_name, messages=history, **gen_conf) for resp in response: if not resp.choices or not resp.choices[0].delta.content: continue ans = resp.choices[0].delta.content total_tokens += 1 if resp.choices[0].finish_reason == "length": if is_chinese(ans): ans += LENGTH_NOTIFICATION_CN else: ans += LENGTH_NOTIFICATION_EN yield ans except openai.APIError as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens class BedrockChat(Base): def __init__(self, key, model_name, base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) import boto3 self.bedrock_ak = json.loads(key).get("bedrock_ak", "") self.bedrock_sk = json.loads(key).get("bedrock_sk", "") self.bedrock_region = json.loads(key).get("bedrock_region", "") self.model_name = model_name if self.bedrock_ak == "" or self.bedrock_sk == "" or self.bedrock_region == "": # Try to create a client using the default credentials (AWS_PROFILE, AWS_DEFAULT_REGION, etc.) self.client = boto3.client("bedrock-runtime") else: self.client = boto3.client(service_name="bedrock-runtime", region_name=self.bedrock_region, aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk) def _clean_conf(self, gen_conf): for k in list(gen_conf.keys()): if k not in ["temperature"]: del gen_conf[k] return gen_conf def _chat(self, history, gen_conf): system = history[0]["content"] if history and history[0]["role"] == "system" else "" hist = [] for item in history: if item["role"] == "system": continue hist.append(deepcopy(item)) if not isinstance(hist[-1]["content"], list) and not isinstance(hist[-1]["content"], tuple): hist[-1]["content"] = [{"text": hist[-1]["content"]}] # Send the message to the model, using a basic inference configuration. response = self.client.converse( modelId=self.model_name, messages=hist, inferenceConfig=gen_conf, system=[{"text": (system if system else "Answer the user's message.")}], ) # Extract and print the response text. ans = response["output"]["message"]["content"][0]["text"] return ans, num_tokens_from_string(ans) def chat_streamly(self, system, history, gen_conf): from botocore.exceptions import ClientError for k in list(gen_conf.keys()): if k not in ["temperature"]: del gen_conf[k] for item in history: if not isinstance(item["content"], list) and not isinstance(item["content"], tuple): item["content"] = [{"text": item["content"]}] if self.model_name.split(".")[0] == "ai21": try: response = self.client.converse(modelId=self.model_name, messages=history, inferenceConfig=gen_conf, system=[{"text": (system if system else "Answer the user's message.")}]) ans = response["output"]["message"]["content"][0]["text"] return ans, num_tokens_from_string(ans) except (ClientError, Exception) as e: return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0 ans = "" try: # Send the message to the model, using a basic inference configuration. streaming_response = self.client.converse_stream( modelId=self.model_name, messages=history, inferenceConfig=gen_conf, system=[{"text": (system if system else "Answer the user's message.")}] ) # Extract and print the streamed response text in real-time. for resp in streaming_response["stream"]: if "contentBlockDelta" in resp: ans = resp["contentBlockDelta"]["delta"]["text"] yield ans except (ClientError, Exception) as e: yield ans + f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}" yield num_tokens_from_string(ans) class GeminiChat(Base): def __init__(self, key, model_name, base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) from google.generativeai import GenerativeModel, client client.configure(api_key=key) _client = client.get_default_generative_client() self.model_name = "models/" + model_name self.model = GenerativeModel(model_name=self.model_name) self.model._client = _client def _clean_conf(self, gen_conf): for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_tokens"]: del gen_conf[k] return gen_conf def _chat(self, history, gen_conf): from google.generativeai.types import content_types system = history[0]["content"] if history and history[0]["role"] == "system" else "" hist = [] for item in history: if item["role"] == "system": continue hist.append(deepcopy(item)) item = hist[-1] if "role" in item and item["role"] == "assistant": item["role"] = "model" if "role" in item and item["role"] == "system": item["role"] = "user" if "content" in item: item["parts"] = item.pop("content") if system: self.model._system_instruction = content_types.to_content(system) response = self.model.generate_content(hist, generation_config=gen_conf) ans = response.text return ans, response.usage_metadata.total_token_count def chat_streamly(self, system, history, gen_conf): from google.generativeai.types import content_types if system: self.model._system_instruction = content_types.to_content(system) for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_tokens"]: del gen_conf[k] for item in history: if "role" in item and item["role"] == "assistant": item["role"] = "model" if "content" in item: item["parts"] = item.pop("content") ans = "" try: response = self.model.generate_content(history, generation_config=gen_conf, stream=True) for resp in response: ans = resp.text yield ans yield response._chunks[-1].usage_metadata.total_token_count except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield 0 class GroqChat(Base): def __init__(self, key, model_name, base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) from groq import Groq self.client = Groq(api_key=key) self.model_name = model_name def _clean_conf(self, gen_conf): for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_tokens"]: del gen_conf[k] return gen_conf def chat_streamly(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_tokens"]: del gen_conf[k] ans = "" total_tokens = 0 try: response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf) for resp in response: if not resp.choices or not resp.choices[0].delta.content: continue ans = resp.choices[0].delta.content total_tokens += 1 if resp.choices[0].finish_reason == "length": if is_chinese(ans): ans += LENGTH_NOTIFICATION_CN else: ans += LENGTH_NOTIFICATION_EN yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens ## openrouter class OpenRouterChat(Base): def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1", **kwargs): if not base_url: base_url = "https://openrouter.ai/api/v1" super().__init__(key, model_name, base_url, **kwargs) class StepFunChat(Base): def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1", **kwargs): if not base_url: base_url = "https://api.stepfun.com/v1" super().__init__(key, model_name, base_url, **kwargs) class NvidiaChat(Base): def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1", **kwargs): if not base_url: base_url = "https://integrate.api.nvidia.com/v1" super().__init__(key, model_name, base_url, **kwargs) class LmStudioChat(Base): def __init__(self, key, model_name, base_url, **kwargs): if not base_url: raise ValueError("Local llm url cannot be None") base_url = urljoin(base_url, "v1") super().__init__(key, model_name, base_url, **kwargs) self.client = OpenAI(api_key="lm-studio", base_url=base_url) self.model_name = model_name class OpenAI_APIChat(Base): def __init__(self, key, model_name, base_url): if not base_url: raise ValueError("url cannot be None") model_name = model_name.split("___")[0] super().__init__(key, model_name, base_url) class PPIOChat(Base): def __init__(self, key, model_name, base_url="https://api.ppinfra.com/v3/openai", **kwargs): if not base_url: base_url = "https://api.ppinfra.com/v3/openai" super().__init__(key, model_name, base_url, **kwargs) class CoHereChat(Base): def __init__(self, key, model_name, base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) from cohere import Client self.client = Client(api_key=key) self.model_name = model_name def _clean_conf(self, gen_conf): if "max_tokens" in gen_conf: del gen_conf["max_tokens"] if "top_p" in gen_conf: gen_conf["p"] = gen_conf.pop("top_p") if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf: gen_conf.pop("presence_penalty") return gen_conf def _chat(self, history, gen_conf): hist = [] for item in history: hist.append(deepcopy(item)) item = hist[-1] if "role" in item and item["role"] == "user": item["role"] = "USER" if "role" in item and item["role"] == "assistant": item["role"] = "CHATBOT" if "content" in item: item["message"] = item.pop("content") mes = hist.pop()["message"] response = self.client.chat(model=self.model_name, chat_history=hist, message=mes, **gen_conf) ans = response.text if response.finish_reason == "MAX_TOKENS": ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" return ( ans, response.meta.tokens.input_tokens + response.meta.tokens.output_tokens, ) def chat_streamly(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) if "max_tokens" in gen_conf: del gen_conf["max_tokens"] if "top_p" in gen_conf: gen_conf["p"] = gen_conf.pop("top_p") if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf: gen_conf.pop("presence_penalty") for item in history: if "role" in item and item["role"] == "user": item["role"] = "USER" if "role" in item and item["role"] == "assistant": item["role"] = "CHATBOT" if "content" in item: item["message"] = item.pop("content") mes = history.pop()["message"] ans = "" total_tokens = 0 try: response = self.client.chat_stream(model=self.model_name, chat_history=history, message=mes, **gen_conf) for resp in response: if resp.event_type == "text-generation": ans = resp.text total_tokens += num_tokens_from_string(resp.text) elif resp.event_type == "stream-end": if resp.finish_reason == "MAX_TOKENS": ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens class LeptonAIChat(Base): def __init__(self, key, model_name, base_url=None, **kwargs): if not base_url: base_url = urljoin("https://" + model_name + ".lepton.run", "api/v1") super().__init__(key, model_name, base_url, **kwargs) class TogetherAIChat(Base): def __init__(self, key, model_name, base_url="https://api.together.xyz/v1", **kwargs): if not base_url: base_url = "https://api.together.xyz/v1" super().__init__(key, model_name, base_url, **kwargs) class PerfXCloudChat(Base): def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1", **kwargs): if not base_url: base_url = "https://cloud.perfxlab.cn/v1" super().__init__(key, model_name, base_url, **kwargs) class UpstageChat(Base): def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar", **kwargs): if not base_url: base_url = "https://api.upstage.ai/v1/solar" super().__init__(key, model_name, base_url, **kwargs) class NovitaAIChat(Base): def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai", **kwargs): if not base_url: base_url = "https://api.novita.ai/v3/openai" super().__init__(key, model_name, base_url, **kwargs) class SILICONFLOWChat(Base): def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1", **kwargs): if not base_url: base_url = "https://api.siliconflow.cn/v1" super().__init__(key, model_name, base_url, **kwargs) class YiChat(Base): def __init__(self, key, model_name, base_url="https://api.lingyiwanwu.com/v1", **kwargs): if not base_url: base_url = "https://api.lingyiwanwu.com/v1" super().__init__(key, model_name, base_url, **kwargs) class ReplicateChat(Base): def __init__(self, key, model_name, base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) from replicate.client import Client self.model_name = model_name self.client = Client(api_token=key) def _chat(self, history, gen_conf): system = history[0]["content"] if history and history[0]["role"] == "system" else "" prompt = "\n".join([item["role"] + ":" + item["content"] for item in history[-5:] if item["role"] != "system"]) response = self.client.run( self.model_name, input={"system_prompt": system, "prompt": prompt, **gen_conf}, ) ans = "".join(response) return ans, num_tokens_from_string(ans) def chat_streamly(self, system, history, gen_conf): if "max_tokens" in gen_conf: del gen_conf["max_tokens"] prompt = "\n".join([item["role"] + ":" + item["content"] for item in history[-5:]]) ans = "" try: response = self.client.run( self.model_name, input={"system_prompt": system, "prompt": prompt, **gen_conf}, ) for resp in response: ans = resp yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield num_tokens_from_string(ans) class HunyuanChat(Base): def __init__(self, key, model_name, base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) from tencentcloud.common import credential from tencentcloud.hunyuan.v20230901 import hunyuan_client key = json.loads(key) sid = key.get("hunyuan_sid", "") sk = key.get("hunyuan_sk", "") cred = credential.Credential(sid, sk) self.model_name = model_name self.client = hunyuan_client.HunyuanClient(cred, "") def _clean_conf(self, gen_conf): _gen_conf = {} if "temperature" in gen_conf: _gen_conf["Temperature"] = gen_conf["temperature"] if "top_p" in gen_conf: _gen_conf["TopP"] = gen_conf["top_p"] return _gen_conf def _chat(self, history, gen_conf): from tencentcloud.hunyuan.v20230901 import models hist = [{k.capitalize(): v for k, v in item.items()} for item in history] req = models.ChatCompletionsRequest() params = {"Model": self.model_name, "Messages": hist, **gen_conf} req.from_json_string(json.dumps(params)) response = self.client.ChatCompletions(req) ans = response.Choices[0].Message.Content return ans, response.Usage.TotalTokens def chat_streamly(self, system, history, gen_conf): from tencentcloud.common.exception.tencent_cloud_sdk_exception import ( TencentCloudSDKException, ) from tencentcloud.hunyuan.v20230901 import models _gen_conf = {} _history = [{k.capitalize(): v for k, v in item.items()} for item in history] if system: _history.insert(0, {"Role": "system", "Content": system}) if "max_tokens" in gen_conf: del gen_conf["max_tokens"] if "temperature" in gen_conf: _gen_conf["Temperature"] = gen_conf["temperature"] if "top_p" in gen_conf: _gen_conf["TopP"] = gen_conf["top_p"] req = models.ChatCompletionsRequest() params = { "Model": self.model_name, "Messages": _history, "Stream": True, **_gen_conf, } req.from_json_string(json.dumps(params)) ans = "" total_tokens = 0 try: response = self.client.ChatCompletions(req) for resp in response: resp = json.loads(resp["data"]) if not resp["Choices"] or not resp["Choices"][0]["Delta"]["Content"]: continue ans = resp["Choices"][0]["Delta"]["Content"] total_tokens += 1 yield ans except TencentCloudSDKException as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens class SparkChat(Base): def __init__(self, key, model_name, base_url="https://spark-api-open.xf-yun.com/v1", **kwargs): if not base_url: base_url = "https://spark-api-open.xf-yun.com/v1" model2version = { "Spark-Max": "generalv3.5", "Spark-Lite": "general", "Spark-Pro": "generalv3", "Spark-Pro-128K": "pro-128k", "Spark-4.0-Ultra": "4.0Ultra", } version2model = {v: k for k, v in model2version.items()} assert model_name in model2version or model_name in version2model, f"The given model name is not supported yet. Support: {list(model2version.keys())}" if model_name in model2version: model_version = model2version[model_name] else: model_version = model_name super().__init__(key, model_version, base_url, **kwargs) class BaiduYiyanChat(Base): def __init__(self, key, model_name, base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) import qianfan key = json.loads(key) ak = key.get("yiyan_ak", "") sk = key.get("yiyan_sk", "") self.client = qianfan.ChatCompletion(ak=ak, sk=sk) self.model_name = model_name.lower() def _clean_conf(self, gen_conf): gen_conf["penalty_score"] = ((gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2) + 1 if "max_tokens" in gen_conf: del gen_conf["max_tokens"] return gen_conf def _chat(self, history, gen_conf): system = history[0]["content"] if history and history[0]["role"] == "system" else "" response = self.client.do(model=self.model_name, messages=[h for h in history if h["role"] != "system"], system=system, **gen_conf).body ans = response["result"] return ans, self.total_token_count(response) def chat_streamly(self, system, history, gen_conf): gen_conf["penalty_score"] = ((gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2) + 1 if "max_tokens" in gen_conf: del gen_conf["max_tokens"] ans = "" total_tokens = 0 try: response = self.client.do(model=self.model_name, messages=history, system=system, stream=True, **gen_conf) for resp in response: resp = resp.body ans = resp["result"] total_tokens = self.total_token_count(resp) yield ans except Exception as e: return ans + "\n**ERROR**: " + str(e), 0 yield total_tokens class AnthropicChat(Base): def __init__(self, key, model_name, base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) import anthropic self.client = anthropic.Anthropic(api_key=key) self.model_name = model_name def _clean_conf(self, gen_conf): if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] gen_conf["max_tokens"] = 8192 if "haiku" in self.model_name or "opus" in self.model_name: gen_conf["max_tokens"] = 4096 return gen_conf def _chat(self, history, gen_conf): system = history[0]["content"] if history and history[0]["role"] == "system" else "" response = self.client.messages.create( model=self.model_name, messages=[h for h in history if h["role"] != "system"], system=system, stream=False, **gen_conf, ).to_dict() ans = response["content"][0]["text"] if response["stop_reason"] == "max_tokens": ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" return ( ans, response["usage"]["input_tokens"] + response["usage"]["output_tokens"], ) def chat_streamly(self, system, history, gen_conf): if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] gen_conf["max_tokens"] = 8192 if "haiku" in self.model_name or "opus" in self.model_name: gen_conf["max_tokens"] = 4096 ans = "" total_tokens = 0 reasoning_start = False try: response = self.client.messages.create( model=self.model_name, messages=history, system=system, stream=True, **gen_conf, ) for res in response: if res.type == "content_block_delta": if res.delta.type == "thinking_delta" and res.delta.thinking: ans = "" if not reasoning_start: reasoning_start = True ans = "" ans += res.delta.thinking + "" else: reasoning_start = False text = res.delta.text ans = text total_tokens += num_tokens_from_string(text) yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens class GoogleChat(Base): def __init__(self, key, model_name, base_url=None, **kwargs): super().__init__(key, model_name, base_url=base_url, **kwargs) import base64 from google.oauth2 import service_account key = json.loads(key) access_token = json.loads(base64.b64decode(key.get("google_service_account_key", ""))) project_id = key.get("google_project_id", "") region = key.get("google_region", "") scopes = ["https://www.googleapis.com/auth/cloud-platform"] self.model_name = model_name if "claude" in self.model_name: from anthropic import AnthropicVertex from google.auth.transport.requests import Request if access_token: credits = service_account.Credentials.from_service_account_info(access_token, scopes=scopes) request = Request() credits.refresh(request) token = credits.token self.client = AnthropicVertex(region=region, project_id=project_id, access_token=token) else: self.client = AnthropicVertex(region=region, project_id=project_id) else: import vertexai.generative_models as glm from google.cloud import aiplatform if access_token: credits = service_account.Credentials.from_service_account_info(access_token) aiplatform.init(credentials=credits, project=project_id, location=region) else: aiplatform.init(project=project_id, location=region) self.client = glm.GenerativeModel(model_name=self.model_name) def _clean_conf(self, gen_conf): if "claude" in self.model_name: if "max_tokens" in gen_conf: del gen_conf["max_tokens"] else: if "max_tokens" in gen_conf: gen_conf["max_output_tokens"] = gen_conf["max_tokens"] for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_output_tokens"]: del gen_conf[k] return gen_conf def _chat(self, history, gen_conf): system = history[0]["content"] if history and history[0]["role"] == "system" else "" if "claude" in self.model_name: response = self.client.messages.create( model=self.model_name, messages=[h for h in history if h["role"] != "system"], system=system, stream=False, **gen_conf, ).json() ans = response["content"][0]["text"] if response["stop_reason"] == "max_tokens": ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" return ( ans, response["usage"]["input_tokens"] + response["usage"]["output_tokens"], ) self.client._system_instruction = system hist = [] for item in history: if item["role"] == "system": continue hist.append(deepcopy(item)) item = hist[-1] if "role" in item and item["role"] == "assistant": item["role"] = "model" if "content" in item: item["parts"] = item.pop("content") response = self.client.generate_content(hist, generation_config=gen_conf) ans = response.text return ans, response.usage_metadata.total_token_count def chat_streamly(self, system, history, gen_conf): if "claude" in self.model_name: if "max_tokens" in gen_conf: del gen_conf["max_tokens"] ans = "" total_tokens = 0 try: response = self.client.messages.create( model=self.model_name, messages=history, system=system, stream=True, **gen_conf, ) for res in response.iter_lines(): res = res.decode("utf-8") if "content_block_delta" in res and "data" in res: text = json.loads(res[6:])["delta"]["text"] ans = text total_tokens += num_tokens_from_string(text) except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens else: self.client._system_instruction = system if "max_tokens" in gen_conf: gen_conf["max_output_tokens"] = gen_conf["max_tokens"] for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_output_tokens"]: del gen_conf[k] for item in history: if "role" in item and item["role"] == "assistant": item["role"] = "model" if "content" in item: item["parts"] = item.pop("content") ans = "" try: response = self.model.generate_content(history, generation_config=gen_conf, stream=True) for resp in response: ans = resp.text yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield response._chunks[-1].usage_metadata.total_token_count class GPUStackChat(Base): def __init__(self, key=None, model_name="", base_url="", **kwargs): if not base_url: raise ValueError("Local llm url cannot be None") base_url = urljoin(base_url, "v1") super().__init__(key, model_name, base_url, **kwargs)