mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-11-04 03:39:41 +00:00 
			
		
		
		
	### What problem does this PR solve? #6421 ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
		
			
				
	
	
		
			1024 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1024 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
#  Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
#  you may not use this file except in compliance with the License.
 | 
						|
#  You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#      http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
#  Unless required by applicable law or agreed to in writing, software
 | 
						|
#  distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
#  See the License for the specific language governing permissions and
 | 
						|
#  limitations under the License.
 | 
						|
#
 | 
						|
import base64
 | 
						|
import io
 | 
						|
import json
 | 
						|
import os
 | 
						|
from abc import ABC
 | 
						|
from io import BytesIO
 | 
						|
 | 
						|
import requests
 | 
						|
from ollama import Client
 | 
						|
from openai import OpenAI
 | 
						|
from openai.lib.azure import AzureOpenAI
 | 
						|
from PIL import Image
 | 
						|
from zhipuai import ZhipuAI
 | 
						|
 | 
						|
from api.utils import get_uuid
 | 
						|
from api.utils.file_utils import get_project_base_directory
 | 
						|
from rag.nlp import is_english
 | 
						|
from rag.prompts import vision_llm_describe_prompt
 | 
						|
from rag.utils import num_tokens_from_string
 | 
						|
 | 
						|
 | 
						|
class Base(ABC):
 | 
						|
    def __init__(self, key, model_name):
 | 
						|
        pass
 | 
						|
 | 
						|
    def describe(self, image):
 | 
						|
        raise NotImplementedError("Please implement encode method!")
 | 
						|
 | 
						|
    def describe_with_prompt(self, image, prompt=None):
 | 
						|
        raise NotImplementedError("Please implement encode method!")
 | 
						|
 | 
						|
    def chat(self, system, history, gen_conf, image=""):
 | 
						|
        if system:
 | 
						|
            history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
 | 
						|
        try:
 | 
						|
            for his in history:
 | 
						|
                if his["role"] == "user":
 | 
						|
                    his["content"] = self.chat_prompt(his["content"], image)
 | 
						|
 | 
						|
            response = self.client.chat.completions.create(
 | 
						|
                model=self.model_name,
 | 
						|
                messages=history,
 | 
						|
                temperature=gen_conf.get("temperature", 0.3),
 | 
						|
                top_p=gen_conf.get("top_p", 0.7)
 | 
						|
            )
 | 
						|
            return response.choices[0].message.content.strip(), response.usage.total_tokens
 | 
						|
        except Exception as e:
 | 
						|
            return "**ERROR**: " + str(e), 0
 | 
						|
 | 
						|
    def chat_streamly(self, system, history, gen_conf, image=""):
 | 
						|
        if system:
 | 
						|
            history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
 | 
						|
 | 
						|
        ans = ""
 | 
						|
        tk_count = 0
 | 
						|
        try:
 | 
						|
            for his in history:
 | 
						|
                if his["role"] == "user":
 | 
						|
                    his["content"] = self.chat_prompt(his["content"], image)
 | 
						|
 | 
						|
            response = self.client.chat.completions.create(
 | 
						|
                model=self.model_name,
 | 
						|
                messages=history,
 | 
						|
                temperature=gen_conf.get("temperature", 0.3),
 | 
						|
                top_p=gen_conf.get("top_p", 0.7),
 | 
						|
                stream=True
 | 
						|
            )
 | 
						|
            for resp in response:
 | 
						|
                if not resp.choices[0].delta.content:
 | 
						|
                    continue
 | 
						|
                delta = resp.choices[0].delta.content
 | 
						|
                ans += delta
 | 
						|
                if resp.choices[0].finish_reason == "length":
 | 
						|
                    ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 | 
						|
                        [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | 
						|
                    tk_count = resp.usage.total_tokens
 | 
						|
                if resp.choices[0].finish_reason == "stop":
 | 
						|
                    tk_count = resp.usage.total_tokens
 | 
						|
                yield ans
 | 
						|
        except Exception as e:
 | 
						|
            yield ans + "\n**ERROR**: " + str(e)
 | 
						|
 | 
						|
        yield tk_count
 | 
						|
 | 
						|
    def image2base64(self, image):
 | 
						|
        if isinstance(image, bytes):
 | 
						|
            return base64.b64encode(image).decode("utf-8")
 | 
						|
        if isinstance(image, BytesIO):
 | 
						|
            return base64.b64encode(image.getvalue()).decode("utf-8")
 | 
						|
        buffered = BytesIO()
 | 
						|
        try:
 | 
						|
            image.save(buffered, format="JPEG")
 | 
						|
        except Exception:
 | 
						|
            image.save(buffered, format="PNG")
 | 
						|
        return base64.b64encode(buffered.getvalue()).decode("utf-8")
 | 
						|
 | 
						|
    def prompt(self, b64):
 | 
						|
        return [
 | 
						|
            {
 | 
						|
                "role": "user",
 | 
						|
                "content": [
 | 
						|
                    {
 | 
						|
                        "type": "image_url",
 | 
						|
                        "image_url": {
 | 
						|
                            "url": f"data:image/jpeg;base64,{b64}"
 | 
						|
                        },
 | 
						|
                    },
 | 
						|
                    {
 | 
						|
                        "text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else
 | 
						|
                        "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
 | 
						|
                    },
 | 
						|
                ],
 | 
						|
            }
 | 
						|
        ]
 | 
						|
 | 
						|
    def vision_llm_prompt(self, b64, prompt=None):
 | 
						|
        return [
 | 
						|
            {
 | 
						|
                "role": "user",
 | 
						|
                "content": [
 | 
						|
                    {
 | 
						|
                        "type": "image_url",
 | 
						|
                        "image_url": {
 | 
						|
                                "url": f"data:image/jpeg;base64,{b64}"
 | 
						|
                        },
 | 
						|
                    },
 | 
						|
                    {
 | 
						|
                        "type": "text",
 | 
						|
                        "text": prompt if prompt else vision_llm_describe_prompt(),
 | 
						|
                    },
 | 
						|
                ],
 | 
						|
            }
 | 
						|
        ]
 | 
						|
 | 
						|
    def chat_prompt(self, text, b64):
 | 
						|
        return [
 | 
						|
            {
 | 
						|
                "type": "image_url",
 | 
						|
                "image_url": {
 | 
						|
                    "url": f"data:image/jpeg;base64,{b64}",
 | 
						|
                },
 | 
						|
            },
 | 
						|
            {
 | 
						|
                "type": "text",
 | 
						|
                "text": text
 | 
						|
            },
 | 
						|
        ]
 | 
						|
 | 
						|
 | 
						|
class GptV4(Base):
 | 
						|
    def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1"):
 | 
						|
        if not base_url:
 | 
						|
            base_url = "https://api.openai.com/v1"
 | 
						|
        self.client = OpenAI(api_key=key, base_url=base_url)
 | 
						|
        self.model_name = model_name
 | 
						|
        self.lang = lang
 | 
						|
 | 
						|
    def describe(self, image):
 | 
						|
        b64 = self.image2base64(image)
 | 
						|
        prompt = self.prompt(b64)
 | 
						|
        for i in range(len(prompt)):
 | 
						|
            for c in prompt[i]["content"]:
 | 
						|
                if "text" in c:
 | 
						|
                    c["type"] = "text"
 | 
						|
 | 
						|
        res = self.client.chat.completions.create(
 | 
						|
            model=self.model_name,
 | 
						|
            messages=prompt
 | 
						|
        )
 | 
						|
        return res.choices[0].message.content.strip(), res.usage.total_tokens
 | 
						|
 | 
						|
    def describe_with_prompt(self, image, prompt=None):
 | 
						|
        b64 = self.image2base64(image)
 | 
						|
        vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
 | 
						|
 | 
						|
        res = self.client.chat.completions.create(
 | 
						|
            model=self.model_name,
 | 
						|
            messages=vision_prompt,
 | 
						|
        )
 | 
						|
        return res.choices[0].message.content.strip(), res.usage.total_tokens
 | 
						|
 | 
						|
 | 
						|
class AzureGptV4(Base):
 | 
						|
    def __init__(self, key, model_name, lang="Chinese", **kwargs):
 | 
						|
        api_key = json.loads(key).get('api_key', '')
 | 
						|
        api_version = json.loads(key).get('api_version', '2024-02-01')
 | 
						|
        self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
 | 
						|
        self.model_name = model_name
 | 
						|
        self.lang = lang
 | 
						|
 | 
						|
    def describe(self, image):
 | 
						|
        b64 = self.image2base64(image)
 | 
						|
        prompt = self.prompt(b64)
 | 
						|
        for i in range(len(prompt)):
 | 
						|
            for c in prompt[i]["content"]:
 | 
						|
                if "text" in c:
 | 
						|
                    c["type"] = "text"
 | 
						|
 | 
						|
        res = self.client.chat.completions.create(
 | 
						|
            model=self.model_name,
 | 
						|
            messages=prompt
 | 
						|
        )
 | 
						|
        return res.choices[0].message.content.strip(), res.usage.total_tokens
 | 
						|
 | 
						|
    def describe_with_prompt(self, image, prompt=None):
 | 
						|
        b64 = self.image2base64(image)
 | 
						|
        vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
 | 
						|
 | 
						|
        res = self.client.chat.completions.create(
 | 
						|
            model=self.model_name,
 | 
						|
            messages=vision_prompt,
 | 
						|
        )
 | 
						|
        return res.choices[0].message.content.strip(), res.usage.total_tokens
 | 
						|
 | 
						|
 | 
						|
class QWenCV(Base):
 | 
						|
    def __init__(self, key, model_name="qwen-vl-chat-v1", lang="Chinese", **kwargs):
 | 
						|
        import dashscope
 | 
						|
        dashscope.api_key = key
 | 
						|
        self.model_name = model_name
 | 
						|
        self.lang = lang
 | 
						|
 | 
						|
    def prompt(self, binary):
 | 
						|
        # stupid as hell
 | 
						|
        tmp_dir = get_project_base_directory("tmp")
 | 
						|
        if not os.path.exists(tmp_dir):
 | 
						|
            os.mkdir(tmp_dir)
 | 
						|
        path = os.path.join(tmp_dir, "%s.jpg" % get_uuid())
 | 
						|
        Image.open(io.BytesIO(binary)).save(path)
 | 
						|
        return [
 | 
						|
            {
 | 
						|
                "role": "user",
 | 
						|
                "content": [
 | 
						|
                    {
 | 
						|
                        "image": f"file://{path}"
 | 
						|
                    },
 | 
						|
                    {
 | 
						|
                        "text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else
 | 
						|
                        "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
 | 
						|
                    },
 | 
						|
                ],
 | 
						|
            }
 | 
						|
        ]
 | 
						|
 | 
						|
    def vision_llm_prompt(self, binary, prompt=None):
 | 
						|
        # stupid as hell
 | 
						|
        tmp_dir = get_project_base_directory("tmp")
 | 
						|
        if not os.path.exists(tmp_dir):
 | 
						|
            os.mkdir(tmp_dir)
 | 
						|
        path = os.path.join(tmp_dir, "%s.jpg" % get_uuid())
 | 
						|
        Image.open(io.BytesIO(binary)).save(path)
 | 
						|
 | 
						|
        return [
 | 
						|
            {
 | 
						|
                "role": "user",
 | 
						|
                "content": [
 | 
						|
                    {
 | 
						|
                        "image": f"file://{path}"
 | 
						|
                    },
 | 
						|
                    {
 | 
						|
                        "text":  prompt if prompt else vision_llm_describe_prompt(),
 | 
						|
                    },
 | 
						|
                ],
 | 
						|
            }
 | 
						|
        ]
 | 
						|
 | 
						|
    def chat_prompt(self, text, b64):
 | 
						|
        return [
 | 
						|
            {"image": f"{b64}"},
 | 
						|
            {"text": text},
 | 
						|
        ]
 | 
						|
 | 
						|
    def describe(self, image):
 | 
						|
        from http import HTTPStatus
 | 
						|
 | 
						|
        from dashscope import MultiModalConversation
 | 
						|
        response = MultiModalConversation.call(model=self.model_name, messages=self.prompt(image))
 | 
						|
        if response.status_code == HTTPStatus.OK:
 | 
						|
            return response.output.choices[0]['message']['content'][0]["text"], response.usage.output_tokens
 | 
						|
        return response.message, 0
 | 
						|
 | 
						|
    def describe_with_prompt(self, image, prompt=None):
 | 
						|
        from http import HTTPStatus
 | 
						|
 | 
						|
        from dashscope import MultiModalConversation
 | 
						|
 | 
						|
        vision_prompt = self.vision_llm_prompt(image, prompt) if prompt else self.vision_llm_prompt(image)
 | 
						|
        response = MultiModalConversation.call(model=self.model_name, messages=vision_prompt)
 | 
						|
        if response.status_code == HTTPStatus.OK:
 | 
						|
            return response.output.choices[0]['message']['content'][0]["text"], response.usage.output_tokens
 | 
						|
        return response.message, 0
 | 
						|
 | 
						|
    def chat(self, system, history, gen_conf, image=""):
 | 
						|
        from http import HTTPStatus
 | 
						|
 | 
						|
        from dashscope import MultiModalConversation
 | 
						|
        if system:
 | 
						|
            history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
 | 
						|
 | 
						|
        for his in history:
 | 
						|
            if his["role"] == "user":
 | 
						|
                his["content"] = self.chat_prompt(his["content"], image)
 | 
						|
        response = MultiModalConversation.call(model=self.model_name, messages=history,
 | 
						|
                                               temperature=gen_conf.get("temperature", 0.3),
 | 
						|
                                               top_p=gen_conf.get("top_p", 0.7))
 | 
						|
 | 
						|
        ans = ""
 | 
						|
        tk_count = 0
 | 
						|
        if response.status_code == HTTPStatus.OK:
 | 
						|
            ans += response.output.choices[0]['message']['content']
 | 
						|
            tk_count += response.usage.total_tokens
 | 
						|
            if response.output.choices[0].get("finish_reason", "") == "length":
 | 
						|
                ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 | 
						|
                    [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | 
						|
            return ans, tk_count
 | 
						|
 | 
						|
        return "**ERROR**: " + response.message, tk_count
 | 
						|
 | 
						|
    def chat_streamly(self, system, history, gen_conf, image=""):
 | 
						|
        from http import HTTPStatus
 | 
						|
 | 
						|
        from dashscope import MultiModalConversation
 | 
						|
        if system:
 | 
						|
            history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
 | 
						|
 | 
						|
        for his in history:
 | 
						|
            if his["role"] == "user":
 | 
						|
                his["content"] = self.chat_prompt(his["content"], image)
 | 
						|
 | 
						|
        ans = ""
 | 
						|
        tk_count = 0
 | 
						|
        try:
 | 
						|
            response = MultiModalConversation.call(model=self.model_name, messages=history,
 | 
						|
                                                   temperature=gen_conf.get("temperature", 0.3),
 | 
						|
                                                   top_p=gen_conf.get("top_p", 0.7),
 | 
						|
                                                   stream=True)
 | 
						|
            for resp in response:
 | 
						|
                if resp.status_code == HTTPStatus.OK:
 | 
						|
                    ans = resp.output.choices[0]['message']['content']
 | 
						|
                    tk_count = resp.usage.total_tokens
 | 
						|
                    if resp.output.choices[0].get("finish_reason", "") == "length":
 | 
						|
                        ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 | 
						|
                            [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | 
						|
                    yield ans
 | 
						|
                else:
 | 
						|
                    yield ans + "\n**ERROR**: " + resp.message if str(resp.message).find(
 | 
						|
                        "Access") < 0 else "Out of credit. Please set the API key in **settings > Model providers.**"
 | 
						|
        except Exception as e:
 | 
						|
            yield ans + "\n**ERROR**: " + str(e)
 | 
						|
 | 
						|
        yield tk_count
 | 
						|
 | 
						|
 | 
						|
class Zhipu4V(Base):
 | 
						|
    def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
 | 
						|
        self.client = ZhipuAI(api_key=key)
 | 
						|
        self.model_name = model_name
 | 
						|
        self.lang = lang
 | 
						|
 | 
						|
    def describe(self, image):
 | 
						|
        b64 = self.image2base64(image)
 | 
						|
 | 
						|
        prompt = self.prompt(b64)
 | 
						|
        prompt[0]["content"][1]["type"] = "text"
 | 
						|
 | 
						|
        res = self.client.chat.completions.create(
 | 
						|
            model=self.model_name,
 | 
						|
            messages=prompt,
 | 
						|
        )
 | 
						|
        return res.choices[0].message.content.strip(), res.usage.total_tokens
 | 
						|
 | 
						|
    def describe_with_prompt(self, image, prompt=None):
 | 
						|
        b64 = self.image2base64(image)
 | 
						|
        vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
 | 
						|
 | 
						|
        res = self.client.chat.completions.create(
 | 
						|
            model=self.model_name,
 | 
						|
            messages=vision_prompt
 | 
						|
        )
 | 
						|
        return res.choices[0].message.content.strip(), res.usage.total_tokens
 | 
						|
 | 
						|
    def chat(self, system, history, gen_conf, image=""):
 | 
						|
        if system:
 | 
						|
            history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
 | 
						|
        try:
 | 
						|
            for his in history:
 | 
						|
                if his["role"] == "user":
 | 
						|
                    his["content"] = self.chat_prompt(his["content"], image)
 | 
						|
 | 
						|
            response = self.client.chat.completions.create(
 | 
						|
                model=self.model_name,
 | 
						|
                messages=history,
 | 
						|
                temperature=gen_conf.get("temperature", 0.3),
 | 
						|
                top_p=gen_conf.get("top_p", 0.7)
 | 
						|
            )
 | 
						|
            return response.choices[0].message.content.strip(), response.usage.total_tokens
 | 
						|
        except Exception as e:
 | 
						|
            return "**ERROR**: " + str(e), 0
 | 
						|
 | 
						|
    def chat_streamly(self, system, history, gen_conf, image=""):
 | 
						|
        if system:
 | 
						|
            history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
 | 
						|
 | 
						|
        ans = ""
 | 
						|
        tk_count = 0
 | 
						|
        try:
 | 
						|
            for his in history:
 | 
						|
                if his["role"] == "user":
 | 
						|
                    his["content"] = self.chat_prompt(his["content"], image)
 | 
						|
 | 
						|
            response = self.client.chat.completions.create(
 | 
						|
                model=self.model_name,
 | 
						|
                messages=history,
 | 
						|
                temperature=gen_conf.get("temperature", 0.3),
 | 
						|
                top_p=gen_conf.get("top_p", 0.7),
 | 
						|
                stream=True
 | 
						|
            )
 | 
						|
            for resp in response:
 | 
						|
                if not resp.choices[0].delta.content:
 | 
						|
                    continue
 | 
						|
                delta = resp.choices[0].delta.content
 | 
						|
                ans += delta
 | 
						|
                if resp.choices[0].finish_reason == "length":
 | 
						|
                    ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 | 
						|
                        [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | 
						|
                    tk_count = resp.usage.total_tokens
 | 
						|
                if resp.choices[0].finish_reason == "stop":
 | 
						|
                    tk_count = resp.usage.total_tokens
 | 
						|
                yield ans
 | 
						|
        except Exception as e:
 | 
						|
            yield ans + "\n**ERROR**: " + str(e)
 | 
						|
 | 
						|
        yield tk_count
 | 
						|
 | 
						|
 | 
						|
class OllamaCV(Base):
 | 
						|
    def __init__(self, key, model_name, lang="Chinese", **kwargs):
 | 
						|
        self.client = Client(host=kwargs["base_url"])
 | 
						|
        self.model_name = model_name
 | 
						|
        self.lang = lang
 | 
						|
 | 
						|
    def describe(self, image):
 | 
						|
        prompt = self.prompt("")
 | 
						|
        try:
 | 
						|
            response = self.client.generate(
 | 
						|
                model=self.model_name,
 | 
						|
                prompt=prompt[0]["content"][1]["text"],
 | 
						|
                images=[image]
 | 
						|
            )
 | 
						|
            ans = response["response"].strip()
 | 
						|
            return ans, 128
 | 
						|
        except Exception as e:
 | 
						|
            return "**ERROR**: " + str(e), 0
 | 
						|
 | 
						|
    def describe_with_prompt(self, image, prompt=None):
 | 
						|
        vision_prompt = self.vision_llm_prompt("", prompt) if prompt else self.vision_llm_prompt("")
 | 
						|
        try:
 | 
						|
            response = self.client.generate(
 | 
						|
                model=self.model_name,
 | 
						|
                prompt=vision_prompt[0]["content"][1]["text"],
 | 
						|
                images=[image],
 | 
						|
            )
 | 
						|
            ans = response["response"].strip()
 | 
						|
            return ans, 128
 | 
						|
        except Exception as e:
 | 
						|
            return "**ERROR**: " + str(e), 0
 | 
						|
 | 
						|
    def chat(self, system, history, gen_conf, image=""):
 | 
						|
        if system:
 | 
						|
            history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
 | 
						|
 | 
						|
        try:
 | 
						|
            for his in history:
 | 
						|
                if his["role"] == "user":
 | 
						|
                    his["images"] = [image]
 | 
						|
            options = {}
 | 
						|
            if "temperature" in gen_conf:
 | 
						|
                options["temperature"] = gen_conf["temperature"]
 | 
						|
            if "top_p" in gen_conf:
 | 
						|
                options["top_k"] = gen_conf["top_p"]
 | 
						|
            if "presence_penalty" in gen_conf:
 | 
						|
                options["presence_penalty"] = gen_conf["presence_penalty"]
 | 
						|
            if "frequency_penalty" in gen_conf:
 | 
						|
                options["frequency_penalty"] = gen_conf["frequency_penalty"]
 | 
						|
            response = self.client.chat(
 | 
						|
                model=self.model_name,
 | 
						|
                messages=history,
 | 
						|
                options=options,
 | 
						|
                keep_alive=-1
 | 
						|
            )
 | 
						|
 | 
						|
            ans = response["message"]["content"].strip()
 | 
						|
            return ans, response["eval_count"] + response.get("prompt_eval_count", 0)
 | 
						|
        except Exception as e:
 | 
						|
            return "**ERROR**: " + str(e), 0
 | 
						|
 | 
						|
    def chat_streamly(self, system, history, gen_conf, image=""):
 | 
						|
        if system:
 | 
						|
            history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
 | 
						|
 | 
						|
        for his in history:
 | 
						|
            if his["role"] == "user":
 | 
						|
                his["images"] = [image]
 | 
						|
        options = {}
 | 
						|
        if "temperature" in gen_conf:
 | 
						|
            options["temperature"] = gen_conf["temperature"]
 | 
						|
        if "top_p" in gen_conf:
 | 
						|
            options["top_k"] = gen_conf["top_p"]
 | 
						|
        if "presence_penalty" in gen_conf:
 | 
						|
            options["presence_penalty"] = gen_conf["presence_penalty"]
 | 
						|
        if "frequency_penalty" in gen_conf:
 | 
						|
            options["frequency_penalty"] = gen_conf["frequency_penalty"]
 | 
						|
        ans = ""
 | 
						|
        try:
 | 
						|
            response = self.client.chat(
 | 
						|
                model=self.model_name,
 | 
						|
                messages=history,
 | 
						|
                stream=True,
 | 
						|
                options=options,
 | 
						|
                keep_alive=-1
 | 
						|
            )
 | 
						|
            for resp in response:
 | 
						|
                if resp["done"]:
 | 
						|
                    yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
 | 
						|
                ans += resp["message"]["content"]
 | 
						|
                yield ans
 | 
						|
        except Exception as e:
 | 
						|
            yield ans + "\n**ERROR**: " + str(e)
 | 
						|
        yield 0
 | 
						|
 | 
						|
 | 
						|
class LocalAICV(GptV4):
 | 
						|
    def __init__(self, key, model_name, base_url, lang="Chinese"):
 | 
						|
        if not base_url:
 | 
						|
            raise ValueError("Local cv model url cannot be None")
 | 
						|
        if base_url.split("/")[-1] != "v1":
 | 
						|
            base_url = os.path.join(base_url, "v1")
 | 
						|
        self.client = OpenAI(api_key="empty", base_url=base_url)
 | 
						|
        self.model_name = model_name.split("___")[0]
 | 
						|
        self.lang = lang
 | 
						|
 | 
						|
 | 
						|
class XinferenceCV(Base):
 | 
						|
    def __init__(self, key, model_name="", lang="Chinese", base_url=""):
 | 
						|
        if base_url.split("/")[-1] != "v1":
 | 
						|
            base_url = os.path.join(base_url, "v1")
 | 
						|
        self.client = OpenAI(api_key=key, base_url=base_url)
 | 
						|
        self.model_name = model_name
 | 
						|
        self.lang = lang
 | 
						|
 | 
						|
    def describe(self, image):
 | 
						|
        b64 = self.image2base64(image)
 | 
						|
 | 
						|
        res = self.client.chat.completions.create(
 | 
						|
            model=self.model_name,
 | 
						|
            messages=self.prompt(b64)
 | 
						|
        )
 | 
						|
        return res.choices[0].message.content.strip(), res.usage.total_tokens
 | 
						|
 | 
						|
    def describe_with_prompt(self, image, prompt=None):
 | 
						|
        b64 = self.image2base64(image)
 | 
						|
        vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
 | 
						|
 | 
						|
        res = self.client.chat.completions.create(
 | 
						|
            model=self.model_name,
 | 
						|
            messages=vision_prompt,
 | 
						|
        )
 | 
						|
        return res.choices[0].message.content.strip(), res.usage.total_tokens
 | 
						|
 | 
						|
 | 
						|
class GeminiCV(Base):
 | 
						|
    def __init__(self, key, model_name="gemini-1.0-pro-vision-latest", lang="Chinese", **kwargs):
 | 
						|
        from google.generativeai import GenerativeModel, client
 | 
						|
        client.configure(api_key=key)
 | 
						|
        _client = client.get_default_generative_client()
 | 
						|
        self.model_name = model_name
 | 
						|
        self.model = GenerativeModel(model_name=self.model_name)
 | 
						|
        self.model._client = _client
 | 
						|
        self.lang = lang
 | 
						|
 | 
						|
    def describe(self, image):
 | 
						|
        from PIL.Image import open
 | 
						|
        prompt = "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else \
 | 
						|
            "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
 | 
						|
        b64 = self.image2base64(image)
 | 
						|
        img = open(BytesIO(base64.b64decode(b64)))
 | 
						|
        input = [prompt, img]
 | 
						|
        res = self.model.generate_content(
 | 
						|
            input
 | 
						|
        )
 | 
						|
        return res.text, res.usage_metadata.total_token_count
 | 
						|
 | 
						|
    def describe_with_prompt(self, image, prompt=None):
 | 
						|
        from PIL.Image import open
 | 
						|
        b64 = self.image2base64(image)
 | 
						|
        vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
 | 
						|
        img = open(BytesIO(base64.b64decode(b64)))
 | 
						|
        input = [vision_prompt, img]
 | 
						|
        res = self.model.generate_content(
 | 
						|
            input,
 | 
						|
        )
 | 
						|
        return res.text, res.usage_metadata.total_token_count
 | 
						|
 | 
						|
    def chat(self, system, history, gen_conf, image=""):
 | 
						|
        from transformers import GenerationConfig
 | 
						|
        if system:
 | 
						|
            history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
 | 
						|
        try:
 | 
						|
            for his in history:
 | 
						|
                if his["role"] == "assistant":
 | 
						|
                    his["role"] = "model"
 | 
						|
                    his["parts"] = [his["content"]]
 | 
						|
                    his.pop("content")
 | 
						|
                if his["role"] == "user":
 | 
						|
                    his["parts"] = [his["content"]]
 | 
						|
                    his.pop("content")
 | 
						|
            history[-1]["parts"].append("data:image/jpeg;base64," + image)
 | 
						|
 | 
						|
            response = self.model.generate_content(history, generation_config=GenerationConfig(
 | 
						|
                temperature=gen_conf.get("temperature", 0.3),
 | 
						|
                top_p=gen_conf.get("top_p", 0.7)))
 | 
						|
 | 
						|
            ans = response.text
 | 
						|
            return ans, response.usage_metadata.total_token_count
 | 
						|
        except Exception as e:
 | 
						|
            return "**ERROR**: " + str(e), 0
 | 
						|
 | 
						|
    def chat_streamly(self, system, history, gen_conf, image=""):
 | 
						|
        from transformers import GenerationConfig
 | 
						|
        if system:
 | 
						|
            history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
 | 
						|
 | 
						|
        ans = ""
 | 
						|
        try:
 | 
						|
            for his in history:
 | 
						|
                if his["role"] == "assistant":
 | 
						|
                    his["role"] = "model"
 | 
						|
                    his["parts"] = [his["content"]]
 | 
						|
                    his.pop("content")
 | 
						|
                if his["role"] == "user":
 | 
						|
                    his["parts"] = [his["content"]]
 | 
						|
                    his.pop("content")
 | 
						|
            history[-1]["parts"].append("data:image/jpeg;base64," + image)
 | 
						|
 | 
						|
            response = self.model.generate_content(history, generation_config=GenerationConfig(
 | 
						|
                temperature=gen_conf.get("temperature", 0.3),
 | 
						|
                top_p=gen_conf.get("top_p", 0.7)), stream=True)
 | 
						|
 | 
						|
            for resp in response:
 | 
						|
                if not resp.text:
 | 
						|
                    continue
 | 
						|
                ans += resp.text
 | 
						|
                yield ans
 | 
						|
        except Exception as e:
 | 
						|
            yield ans + "\n**ERROR**: " + str(e)
 | 
						|
 | 
						|
        yield response._chunks[-1].usage_metadata.total_token_count
 | 
						|
 | 
						|
 | 
						|
class OpenRouterCV(GptV4):
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        key,
 | 
						|
        model_name,
 | 
						|
        lang="Chinese",
 | 
						|
        base_url="https://openrouter.ai/api/v1",
 | 
						|
    ):
 | 
						|
        if not base_url:
 | 
						|
            base_url = "https://openrouter.ai/api/v1"
 | 
						|
        self.client = OpenAI(api_key=key, base_url=base_url)
 | 
						|
        self.model_name = model_name
 | 
						|
        self.lang = lang
 | 
						|
 | 
						|
 | 
						|
class LocalCV(Base):
 | 
						|
    def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
 | 
						|
        pass
 | 
						|
 | 
						|
    def describe(self, image):
 | 
						|
        return "", 0
 | 
						|
 | 
						|
 | 
						|
class NvidiaCV(Base):
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        key,
 | 
						|
        model_name,
 | 
						|
        lang="Chinese",
 | 
						|
        base_url="https://ai.api.nvidia.com/v1/vlm",
 | 
						|
    ):
 | 
						|
        if not base_url:
 | 
						|
            base_url = ("https://ai.api.nvidia.com/v1/vlm",)
 | 
						|
        self.lang = lang
 | 
						|
        factory, llm_name = model_name.split("/")
 | 
						|
        if factory != "liuhaotian":
 | 
						|
            self.base_url = os.path.join(base_url, factory, llm_name)
 | 
						|
        else:
 | 
						|
            self.base_url = os.path.join(
 | 
						|
                base_url, "community", llm_name.replace("-v1.6", "16")
 | 
						|
            )
 | 
						|
        self.key = key
 | 
						|
 | 
						|
    def describe(self, image):
 | 
						|
        b64 = self.image2base64(image)
 | 
						|
        response = requests.post(
 | 
						|
            url=self.base_url,
 | 
						|
            headers={
 | 
						|
                "accept": "application/json",
 | 
						|
                "content-type": "application/json",
 | 
						|
                "Authorization": f"Bearer {self.key}",
 | 
						|
            },
 | 
						|
            json={
 | 
						|
                "messages": self.prompt(b64)
 | 
						|
            },
 | 
						|
        )
 | 
						|
        response = response.json()
 | 
						|
        return (
 | 
						|
            response["choices"][0]["message"]["content"].strip(),
 | 
						|
            response["usage"]["total_tokens"],
 | 
						|
        )
 | 
						|
 | 
						|
    def describe_with_prompt(self, image, prompt=None):
 | 
						|
        b64 = self.image2base64(image)
 | 
						|
        vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
 | 
						|
 | 
						|
        response = requests.post(
 | 
						|
            url=self.base_url,
 | 
						|
            headers={
 | 
						|
                "accept": "application/json",
 | 
						|
                "content-type": "application/json",
 | 
						|
                "Authorization": f"Bearer {self.key}",
 | 
						|
            },
 | 
						|
            json={
 | 
						|
                "messages": vision_prompt,
 | 
						|
            },
 | 
						|
        )
 | 
						|
        response = response.json()
 | 
						|
        return (
 | 
						|
            response["choices"][0]["message"]["content"].strip(),
 | 
						|
            response["usage"]["total_tokens"],
 | 
						|
        )
 | 
						|
 | 
						|
    def prompt(self, b64):
 | 
						|
        return [
 | 
						|
            {
 | 
						|
                "role": "user",
 | 
						|
                "content": (
 | 
						|
                    "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
 | 
						|
                    if self.lang.lower() == "chinese"
 | 
						|
                    else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
 | 
						|
                )
 | 
						|
                + f' <img src="data:image/jpeg;base64,{b64}"/>',
 | 
						|
            }
 | 
						|
        ]
 | 
						|
 | 
						|
    def vision_llm_prompt(self, b64, prompt=None):
 | 
						|
        return [
 | 
						|
            {
 | 
						|
                "role": "user",
 | 
						|
                "content": (
 | 
						|
                    prompt if prompt else vision_llm_describe_prompt()
 | 
						|
                )
 | 
						|
                + f' <img src="data:image/jpeg;base64,{b64}"/>',
 | 
						|
            }
 | 
						|
        ]
 | 
						|
 | 
						|
    def chat_prompt(self, text, b64):
 | 
						|
        return [
 | 
						|
            {
 | 
						|
                "role": "user",
 | 
						|
                "content": text + f' <img src="data:image/jpeg;base64,{b64}"/>',
 | 
						|
            }
 | 
						|
        ]
 | 
						|
 | 
						|
 | 
						|
class StepFunCV(GptV4):
 | 
						|
    def __init__(self, key, model_name="step-1v-8k", lang="Chinese", base_url="https://api.stepfun.com/v1"):
 | 
						|
        if not base_url:
 | 
						|
            base_url = "https://api.stepfun.com/v1"
 | 
						|
        self.client = OpenAI(api_key=key, base_url=base_url)
 | 
						|
        self.model_name = model_name
 | 
						|
        self.lang = lang
 | 
						|
 | 
						|
 | 
						|
class LmStudioCV(GptV4):
 | 
						|
    def __init__(self, key, model_name, lang="Chinese", base_url=""):
 | 
						|
        if not base_url:
 | 
						|
            raise ValueError("Local llm url cannot be None")
 | 
						|
        if base_url.split("/")[-1] != "v1":
 | 
						|
            base_url = os.path.join(base_url, "v1")
 | 
						|
        self.client = OpenAI(api_key="lm-studio", base_url=base_url)
 | 
						|
        self.model_name = model_name
 | 
						|
        self.lang = lang
 | 
						|
 | 
						|
 | 
						|
class OpenAI_APICV(GptV4):
 | 
						|
    def __init__(self, key, model_name, lang="Chinese", base_url=""):
 | 
						|
        if not base_url:
 | 
						|
            raise ValueError("url cannot be None")
 | 
						|
        if base_url.split("/")[-1] != "v1":
 | 
						|
            base_url = os.path.join(base_url, "v1")
 | 
						|
        self.client = OpenAI(api_key=key, base_url=base_url)
 | 
						|
        self.model_name = model_name.split("___")[0]
 | 
						|
        self.lang = lang
 | 
						|
 | 
						|
 | 
						|
class TogetherAICV(GptV4):
 | 
						|
    def __init__(self, key, model_name, lang="Chinese", base_url="https://api.together.xyz/v1"):
 | 
						|
        if not base_url:
 | 
						|
            base_url = "https://api.together.xyz/v1"
 | 
						|
        super().__init__(key, model_name, lang, base_url)
 | 
						|
 | 
						|
 | 
						|
class YiCV(GptV4):
 | 
						|
    def __init__(self, key, model_name, lang="Chinese", base_url="https://api.lingyiwanwu.com/v1",):
 | 
						|
        if not base_url:
 | 
						|
            base_url = "https://api.lingyiwanwu.com/v1"
 | 
						|
        super().__init__(key, model_name, lang, base_url)
 | 
						|
 | 
						|
 | 
						|
class HunyuanCV(Base):
 | 
						|
    def __init__(self, key, model_name, lang="Chinese", base_url=None):
 | 
						|
        from tencentcloud.common import credential
 | 
						|
        from tencentcloud.hunyuan.v20230901 import hunyuan_client
 | 
						|
 | 
						|
        key = json.loads(key)
 | 
						|
        sid = key.get("hunyuan_sid", "")
 | 
						|
        sk = key.get("hunyuan_sk", "")
 | 
						|
        cred = credential.Credential(sid, sk)
 | 
						|
        self.model_name = model_name
 | 
						|
        self.client = hunyuan_client.HunyuanClient(cred, "")
 | 
						|
        self.lang = lang
 | 
						|
 | 
						|
    def describe(self, image):
 | 
						|
        from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
 | 
						|
            TencentCloudSDKException,
 | 
						|
        )
 | 
						|
        from tencentcloud.hunyuan.v20230901 import models
 | 
						|
 | 
						|
        b64 = self.image2base64(image)
 | 
						|
        req = models.ChatCompletionsRequest()
 | 
						|
        params = {"Model": self.model_name, "Messages": self.prompt(b64)}
 | 
						|
        req.from_json_string(json.dumps(params))
 | 
						|
        ans = ""
 | 
						|
        try:
 | 
						|
            response = self.client.ChatCompletions(req)
 | 
						|
            ans = response.Choices[0].Message.Content
 | 
						|
            return ans, response.Usage.TotalTokens
 | 
						|
        except TencentCloudSDKException as e:
 | 
						|
            return ans + "\n**ERROR**: " + str(e), 0
 | 
						|
 | 
						|
    def describe_with_prompt(self, image, prompt=None):
 | 
						|
        from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudSDKException
 | 
						|
        from tencentcloud.hunyuan.v20230901 import models
 | 
						|
 | 
						|
        b64 = self.image2base64(image)
 | 
						|
        vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
 | 
						|
        req = models.ChatCompletionsRequest()
 | 
						|
        params = {"Model": self.model_name, "Messages": vision_prompt}
 | 
						|
        req.from_json_string(json.dumps(params))
 | 
						|
        ans = ""
 | 
						|
        try:
 | 
						|
            response = self.client.ChatCompletions(req)
 | 
						|
            ans = response.Choices[0].Message.Content
 | 
						|
            return ans, response.Usage.TotalTokens
 | 
						|
        except TencentCloudSDKException as e:
 | 
						|
            return ans + "\n**ERROR**: " + str(e), 0
 | 
						|
 | 
						|
    def prompt(self, b64):
 | 
						|
        return [
 | 
						|
            {
 | 
						|
                "Role": "user",
 | 
						|
                "Contents": [
 | 
						|
                    {
 | 
						|
                        "Type": "image_url",
 | 
						|
                        "ImageUrl": {
 | 
						|
                            "Url": f"data:image/jpeg;base64,{b64}"
 | 
						|
                        },
 | 
						|
                    },
 | 
						|
                    {
 | 
						|
                        "Type": "text",
 | 
						|
                        "Text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else
 | 
						|
                        "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
 | 
						|
                    },
 | 
						|
                ],
 | 
						|
            }
 | 
						|
        ]
 | 
						|
 | 
						|
 | 
						|
class AnthropicCV(Base):
 | 
						|
    def __init__(self, key, model_name, base_url=None):
 | 
						|
        import anthropic
 | 
						|
 | 
						|
        self.client = anthropic.Anthropic(api_key=key)
 | 
						|
        self.model_name = model_name
 | 
						|
        self.system = ""
 | 
						|
        self.max_tokens = 8192
 | 
						|
        if "haiku" in self.model_name or "opus" in self.model_name:
 | 
						|
            self.max_tokens = 4096
 | 
						|
 | 
						|
    def prompt(self, b64, prompt):
 | 
						|
        return [
 | 
						|
            {
 | 
						|
                "role": "user",
 | 
						|
                "content": [
 | 
						|
                    {
 | 
						|
                        "type": "image",
 | 
						|
                        "source": {
 | 
						|
                            "type": "base64",
 | 
						|
                            "media_type": "image/jpeg",
 | 
						|
                            "data": b64,
 | 
						|
                        },
 | 
						|
                    },
 | 
						|
                    {
 | 
						|
                        "type": "text",
 | 
						|
                        "text": prompt
 | 
						|
                    }
 | 
						|
                ],
 | 
						|
            }
 | 
						|
        ]
 | 
						|
 | 
						|
    def describe(self, image):
 | 
						|
        b64 = self.image2base64(image)
 | 
						|
        prompt = self.prompt(b64,
 | 
						|
                             "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else
 | 
						|
                             "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
 | 
						|
                             )
 | 
						|
 | 
						|
        response = self.client.messages.create(
 | 
						|
            model=self.model_name,
 | 
						|
            max_tokens=self.max_tokens,
 | 
						|
            messages=prompt
 | 
						|
        )
 | 
						|
        return response["content"][0]["text"].strip(), response["usage"]["input_tokens"]+response["usage"]["output_tokens"]
 | 
						|
 | 
						|
    def describe_with_prompt(self, image, prompt=None):
 | 
						|
        b64 = self.image2base64(image)
 | 
						|
        prompt = self.prompt(b64, prompt if prompt else vision_llm_describe_prompt())
 | 
						|
 | 
						|
        response = self.client.messages.create(
 | 
						|
            model=self.model_name,
 | 
						|
            max_tokens=self.max_tokens,
 | 
						|
            messages=prompt
 | 
						|
        )
 | 
						|
        return response["content"][0]["text"].strip(), response["usage"]["input_tokens"]+response["usage"]["output_tokens"]
 | 
						|
 | 
						|
    def chat(self, system, history, gen_conf):
 | 
						|
        if "presence_penalty" in gen_conf:
 | 
						|
            del gen_conf["presence_penalty"]
 | 
						|
        if "frequency_penalty" in gen_conf:
 | 
						|
            del gen_conf["frequency_penalty"]
 | 
						|
        gen_conf["max_tokens"] = self.max_tokens
 | 
						|
 | 
						|
        ans = ""
 | 
						|
        try:
 | 
						|
            response = self.client.messages.create(
 | 
						|
                model=self.model_name,
 | 
						|
                messages=history,
 | 
						|
                system=system,
 | 
						|
                stream=False,
 | 
						|
                **gen_conf,
 | 
						|
            ).to_dict()
 | 
						|
            ans = response["content"][0]["text"]
 | 
						|
            if response["stop_reason"] == "max_tokens":
 | 
						|
                ans += (
 | 
						|
                    "...\nFor the content length reason, it stopped, continue?"
 | 
						|
                    if is_english([ans])
 | 
						|
                    else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | 
						|
                )
 | 
						|
            return (
 | 
						|
                ans,
 | 
						|
                response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
 | 
						|
            )
 | 
						|
        except Exception as e:
 | 
						|
            return ans + "\n**ERROR**: " + str(e), 0
 | 
						|
 | 
						|
    def chat_streamly(self, system, history, gen_conf):
 | 
						|
        if "presence_penalty" in gen_conf:
 | 
						|
            del gen_conf["presence_penalty"]
 | 
						|
        if "frequency_penalty" in gen_conf:
 | 
						|
            del gen_conf["frequency_penalty"]
 | 
						|
        gen_conf["max_tokens"] = self.max_tokens
 | 
						|
 | 
						|
        ans = ""
 | 
						|
        total_tokens = 0
 | 
						|
        try:
 | 
						|
            response = self.client.messages.create(
 | 
						|
                model=self.model_name,
 | 
						|
                messages=history,
 | 
						|
                system=system,
 | 
						|
                stream=True,
 | 
						|
                **gen_conf,
 | 
						|
            )
 | 
						|
            for res in response:
 | 
						|
                if res.type == 'content_block_delta':
 | 
						|
                    if res.delta.type == "thinking_delta" and res.delta.thinking:
 | 
						|
                        if ans.find("<think>") < 0:
 | 
						|
                            ans += "<think>"
 | 
						|
                        ans = ans.replace("</think>", "")
 | 
						|
                        ans += res.delta.thinking + "</think>"
 | 
						|
                    else:
 | 
						|
                        text = res.delta.text
 | 
						|
                        ans += text
 | 
						|
                        total_tokens += num_tokens_from_string(text)
 | 
						|
                    yield ans
 | 
						|
        except Exception as e:
 | 
						|
            yield ans + "\n**ERROR**: " + str(e)
 | 
						|
 | 
						|
        yield total_tokens |