mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-06-26 22:19:57 +00:00

### What problem does this PR solve? https://github.com/infiniflow/ragflow/issues/8175 ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
453 lines
18 KiB
Python
453 lines
18 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import json
|
|
import time
|
|
import traceback
|
|
from uuid import uuid4
|
|
from agent.canvas import Canvas
|
|
from api.db import TenantPermission
|
|
from api.db.db_models import DB, CanvasTemplate, User, UserCanvas, API4Conversation
|
|
from api.db.services.api_service import API4ConversationService
|
|
from api.db.services.common_service import CommonService
|
|
from api.db.services.conversation_service import structure_answer
|
|
from api.utils import get_uuid
|
|
from api.utils.api_utils import get_data_openai
|
|
import tiktoken
|
|
from peewee import fn
|
|
class CanvasTemplateService(CommonService):
|
|
model = CanvasTemplate
|
|
|
|
|
|
class UserCanvasService(CommonService):
|
|
model = UserCanvas
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_list(cls, tenant_id,
|
|
page_number, items_per_page, orderby, desc, id, title):
|
|
agents = cls.model.select()
|
|
if id:
|
|
agents = agents.where(cls.model.id == id)
|
|
if title:
|
|
agents = agents.where(cls.model.title == title)
|
|
agents = agents.where(cls.model.user_id == tenant_id)
|
|
if desc:
|
|
agents = agents.order_by(cls.model.getter_by(orderby).desc())
|
|
else:
|
|
agents = agents.order_by(cls.model.getter_by(orderby).asc())
|
|
|
|
agents = agents.paginate(page_number, items_per_page)
|
|
|
|
return list(agents.dicts())
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_by_tenant_id(cls, pid):
|
|
try:
|
|
|
|
fields = [
|
|
cls.model.id,
|
|
cls.model.avatar,
|
|
cls.model.title,
|
|
cls.model.dsl,
|
|
cls.model.description,
|
|
cls.model.permission,
|
|
cls.model.update_time,
|
|
cls.model.user_id,
|
|
cls.model.create_time,
|
|
cls.model.create_date,
|
|
cls.model.update_date,
|
|
User.nickname,
|
|
User.avatar.alias('tenant_avatar'),
|
|
]
|
|
angents = cls.model.select(*fields) \
|
|
.join(User, on=(cls.model.user_id == User.id)) \
|
|
.where(cls.model.id == pid)
|
|
# obj = cls.model.query(id=pid)[0]
|
|
return True, angents.dicts()[0]
|
|
except Exception as e:
|
|
print(e)
|
|
return False, None
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_by_tenant_ids(cls, joined_tenant_ids, user_id,
|
|
page_number, items_per_page,
|
|
orderby, desc, keywords,
|
|
):
|
|
fields = [
|
|
cls.model.id,
|
|
cls.model.avatar,
|
|
cls.model.title,
|
|
cls.model.dsl,
|
|
cls.model.description,
|
|
cls.model.permission,
|
|
User.nickname,
|
|
User.avatar.alias('tenant_avatar'),
|
|
cls.model.update_time
|
|
]
|
|
if keywords:
|
|
angents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
|
|
((cls.model.user_id.in_(joined_tenant_ids) & (cls.model.permission ==
|
|
TenantPermission.TEAM.value)) | (
|
|
cls.model.user_id == user_id)),
|
|
(fn.LOWER(cls.model.title).contains(keywords.lower()))
|
|
)
|
|
else:
|
|
angents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
|
|
((cls.model.user_id.in_(joined_tenant_ids) & (cls.model.permission ==
|
|
TenantPermission.TEAM.value)) | (
|
|
cls.model.user_id == user_id))
|
|
)
|
|
if desc:
|
|
angents = angents.order_by(cls.model.getter_by(orderby).desc())
|
|
else:
|
|
angents = angents.order_by(cls.model.getter_by(orderby).asc())
|
|
count = angents.count()
|
|
angents = angents.paginate(page_number, items_per_page)
|
|
return list(angents.dicts()), count
|
|
|
|
|
|
def completion(tenant_id, agent_id, question, session_id=None, stream=True, **kwargs):
|
|
e, cvs = UserCanvasService.get_by_id(agent_id)
|
|
assert e, "Agent not found."
|
|
assert cvs.user_id == tenant_id, "You do not own the agent."
|
|
if not isinstance(cvs.dsl,str):
|
|
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
|
|
canvas = Canvas(cvs.dsl, tenant_id)
|
|
canvas.reset()
|
|
message_id = str(uuid4())
|
|
if not session_id:
|
|
query = canvas.get_preset_param()
|
|
if query:
|
|
for ele in query:
|
|
if not ele["optional"]:
|
|
if not kwargs.get(ele["key"]):
|
|
assert False, f"`{ele['key']}` is required"
|
|
ele["value"] = kwargs[ele["key"]]
|
|
if ele["optional"]:
|
|
if kwargs.get(ele["key"]):
|
|
ele["value"] = kwargs[ele['key']]
|
|
else:
|
|
if "value" in ele:
|
|
ele.pop("value")
|
|
cvs.dsl = json.loads(str(canvas))
|
|
session_id=get_uuid()
|
|
conv = {
|
|
"id": session_id,
|
|
"dialog_id": cvs.id,
|
|
"user_id": kwargs.get("user_id", "") if isinstance(kwargs, dict) else "",
|
|
"message": [{"role": "assistant", "content": canvas.get_prologue(), "created_at": time.time()}],
|
|
"source": "agent",
|
|
"dsl": cvs.dsl
|
|
}
|
|
API4ConversationService.save(**conv)
|
|
conv = API4Conversation(**conv)
|
|
else:
|
|
e, conv = API4ConversationService.get_by_id(session_id)
|
|
assert e, "Session not found!"
|
|
canvas = Canvas(json.dumps(conv.dsl), tenant_id)
|
|
canvas.messages.append({"role": "user", "content": question, "id": message_id})
|
|
canvas.add_user_input(question)
|
|
if not conv.message:
|
|
conv.message = []
|
|
conv.message.append({
|
|
"role": "user",
|
|
"content": question,
|
|
"id": message_id
|
|
})
|
|
if not conv.reference:
|
|
conv.reference = []
|
|
conv.reference.append({"chunks": [], "doc_aggs": []})
|
|
|
|
kwargs_changed = False
|
|
if kwargs:
|
|
query = canvas.get_preset_param()
|
|
if query:
|
|
for ele in query:
|
|
if ele["key"] in kwargs:
|
|
if ele["value"] != kwargs[ele["key"]]:
|
|
ele["value"] = kwargs[ele["key"]]
|
|
kwargs_changed = True
|
|
if kwargs_changed:
|
|
conv.dsl = json.loads(str(canvas))
|
|
API4ConversationService.update_by_id(session_id, {"dsl": conv.dsl})
|
|
|
|
final_ans = {"reference": [], "content": ""}
|
|
if stream:
|
|
try:
|
|
for ans in canvas.run(stream=stream):
|
|
if ans.get("running_status"):
|
|
yield "data:" + json.dumps({"code": 0, "message": "",
|
|
"data": {"answer": ans["content"],
|
|
"running_status": True}},
|
|
ensure_ascii=False) + "\n\n"
|
|
continue
|
|
for k in ans.keys():
|
|
final_ans[k] = ans[k]
|
|
ans = {"answer": ans["content"], "reference": ans.get("reference", []), "param": canvas.get_preset_param()}
|
|
ans = structure_answer(conv, ans, message_id, session_id)
|
|
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans},
|
|
ensure_ascii=False) + "\n\n"
|
|
|
|
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "created_at": time.time(), "id": message_id})
|
|
canvas.history.append(("assistant", final_ans["content"]))
|
|
if final_ans.get("reference"):
|
|
canvas.reference.append(final_ans["reference"])
|
|
conv.dsl = json.loads(str(canvas))
|
|
API4ConversationService.append_message(conv.id, conv.to_dict())
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
conv.dsl = json.loads(str(canvas))
|
|
API4ConversationService.append_message(conv.id, conv.to_dict())
|
|
yield "data:" + json.dumps({"code": 500, "message": str(e),
|
|
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
|
|
ensure_ascii=False) + "\n\n"
|
|
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
|
|
|
|
else:
|
|
for answer in canvas.run(stream=False):
|
|
if answer.get("running_status"):
|
|
continue
|
|
final_ans["content"] = "\n".join(answer["content"]) if "content" in answer else ""
|
|
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "id": message_id})
|
|
if final_ans.get("reference"):
|
|
canvas.reference.append(final_ans["reference"])
|
|
conv.dsl = json.loads(str(canvas))
|
|
|
|
result = {"answer": final_ans["content"], "reference": final_ans.get("reference", []) , "param": canvas.get_preset_param()}
|
|
result = structure_answer(conv, result, message_id, session_id)
|
|
API4ConversationService.append_message(conv.id, conv.to_dict())
|
|
yield result
|
|
break
|
|
def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True, **kwargs):
|
|
"""Main function for OpenAI-compatible completions, structured similarly to the completion function."""
|
|
tiktokenenc = tiktoken.get_encoding("cl100k_base")
|
|
e, cvs = UserCanvasService.get_by_id(agent_id)
|
|
|
|
if not e:
|
|
yield get_data_openai(
|
|
id=session_id,
|
|
model=agent_id,
|
|
content="**ERROR**: Agent not found."
|
|
)
|
|
return
|
|
|
|
if cvs.user_id != tenant_id:
|
|
yield get_data_openai(
|
|
id=session_id,
|
|
model=agent_id,
|
|
content="**ERROR**: You do not own the agent"
|
|
)
|
|
return
|
|
|
|
if not isinstance(cvs.dsl, str):
|
|
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
|
|
|
|
canvas = Canvas(cvs.dsl, tenant_id)
|
|
canvas.reset()
|
|
message_id = str(uuid4())
|
|
|
|
# Handle new session creation
|
|
if not session_id:
|
|
query = canvas.get_preset_param()
|
|
if query:
|
|
for ele in query:
|
|
if not ele["optional"]:
|
|
if not kwargs.get(ele["key"]):
|
|
yield get_data_openai(
|
|
id=None,
|
|
model=agent_id,
|
|
content=f"`{ele['key']}` is required",
|
|
completion_tokens=len(tiktokenenc.encode(f"`{ele['key']}` is required")),
|
|
prompt_tokens=len(tiktokenenc.encode(question if question else ""))
|
|
)
|
|
return
|
|
ele["value"] = kwargs[ele["key"]]
|
|
if ele["optional"]:
|
|
if kwargs.get(ele["key"]):
|
|
ele["value"] = kwargs[ele['key']]
|
|
else:
|
|
if "value" in ele:
|
|
ele.pop("value")
|
|
|
|
cvs.dsl = json.loads(str(canvas))
|
|
session_id = get_uuid()
|
|
conv = {
|
|
"id": session_id,
|
|
"dialog_id": cvs.id,
|
|
"user_id": kwargs.get("user_id", "") if isinstance(kwargs, dict) else "",
|
|
"message": [{"role": "assistant", "content": canvas.get_prologue(), "created_at": time.time()}],
|
|
"source": "agent",
|
|
"dsl": cvs.dsl
|
|
}
|
|
canvas.messages.append({"role": "user", "content": question, "id": message_id})
|
|
canvas.add_user_input(question)
|
|
|
|
API4ConversationService.save(**conv)
|
|
conv = API4Conversation(**conv)
|
|
if not conv.message:
|
|
conv.message = []
|
|
conv.message.append({
|
|
"role": "user",
|
|
"content": question,
|
|
"id": message_id
|
|
})
|
|
|
|
if not conv.reference:
|
|
conv.reference = []
|
|
conv.reference.append({"chunks": [], "doc_aggs": []})
|
|
|
|
# Handle existing session
|
|
else:
|
|
e, conv = API4ConversationService.get_by_id(session_id)
|
|
if not e:
|
|
yield get_data_openai(
|
|
id=session_id,
|
|
model=agent_id,
|
|
content="**ERROR**: Session not found!"
|
|
)
|
|
return
|
|
|
|
canvas = Canvas(json.dumps(conv.dsl), tenant_id)
|
|
canvas.messages.append({"role": "user", "content": question, "id": message_id})
|
|
canvas.add_user_input(question)
|
|
|
|
if not conv.message:
|
|
conv.message = []
|
|
conv.message.append({
|
|
"role": "user",
|
|
"content": question,
|
|
"id": message_id
|
|
})
|
|
|
|
if not conv.reference:
|
|
conv.reference = []
|
|
conv.reference.append({"chunks": [], "doc_aggs": []})
|
|
|
|
# Process request based on stream mode
|
|
final_ans = {"reference": [], "content": ""}
|
|
prompt_tokens = len(tiktokenenc.encode(str(question)))
|
|
|
|
if stream:
|
|
try:
|
|
completion_tokens = 0
|
|
for ans in canvas.run(stream=True, bypass_begin=True):
|
|
if ans.get("running_status"):
|
|
completion_tokens += len(tiktokenenc.encode(ans.get("content", "")))
|
|
yield "data: " + json.dumps(
|
|
get_data_openai(
|
|
id=session_id,
|
|
model=agent_id,
|
|
content=ans["content"],
|
|
object="chat.completion.chunk",
|
|
completion_tokens=completion_tokens,
|
|
prompt_tokens=prompt_tokens
|
|
),
|
|
ensure_ascii=False
|
|
) + "\n\n"
|
|
continue
|
|
|
|
for k in ans.keys():
|
|
final_ans[k] = ans[k]
|
|
|
|
completion_tokens += len(tiktokenenc.encode(final_ans.get("content", "")))
|
|
yield "data: " + json.dumps(
|
|
get_data_openai(
|
|
id=session_id,
|
|
model=agent_id,
|
|
content=final_ans["content"],
|
|
object="chat.completion.chunk",
|
|
finish_reason="stop",
|
|
completion_tokens=completion_tokens,
|
|
prompt_tokens=prompt_tokens
|
|
),
|
|
ensure_ascii=False
|
|
) + "\n\n"
|
|
|
|
# Update conversation
|
|
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "created_at": time.time(), "id": message_id})
|
|
canvas.history.append(("assistant", final_ans["content"]))
|
|
if final_ans.get("reference"):
|
|
canvas.reference.append(final_ans["reference"])
|
|
conv.dsl = json.loads(str(canvas))
|
|
API4ConversationService.append_message(conv.id, conv.to_dict())
|
|
|
|
yield "data: [DONE]\n\n"
|
|
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
conv.dsl = json.loads(str(canvas))
|
|
API4ConversationService.append_message(conv.id, conv.to_dict())
|
|
yield "data: " + json.dumps(
|
|
get_data_openai(
|
|
id=session_id,
|
|
model=agent_id,
|
|
content="**ERROR**: " + str(e),
|
|
finish_reason="stop",
|
|
completion_tokens=len(tiktokenenc.encode("**ERROR**: " + str(e))),
|
|
prompt_tokens=prompt_tokens
|
|
),
|
|
ensure_ascii=False
|
|
) + "\n\n"
|
|
yield "data: [DONE]\n\n"
|
|
|
|
else: # Non-streaming mode
|
|
try:
|
|
all_answer_content = ""
|
|
for answer in canvas.run(stream=False, bypass_begin=True):
|
|
if answer.get("running_status"):
|
|
continue
|
|
|
|
final_ans["content"] = "\n".join(answer["content"]) if "content" in answer else ""
|
|
final_ans["reference"] = answer.get("reference", [])
|
|
all_answer_content += final_ans["content"]
|
|
|
|
final_ans["content"] = all_answer_content
|
|
|
|
# Update conversation
|
|
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "created_at": time.time(), "id": message_id})
|
|
canvas.history.append(("assistant", final_ans["content"]))
|
|
if final_ans.get("reference"):
|
|
canvas.reference.append(final_ans["reference"])
|
|
conv.dsl = json.loads(str(canvas))
|
|
API4ConversationService.append_message(conv.id, conv.to_dict())
|
|
|
|
# Return the response in OpenAI format
|
|
yield get_data_openai(
|
|
id=session_id,
|
|
model=agent_id,
|
|
content=final_ans["content"],
|
|
finish_reason="stop",
|
|
completion_tokens=len(tiktokenenc.encode(final_ans["content"])),
|
|
prompt_tokens=prompt_tokens,
|
|
param=canvas.get_preset_param() # Added param info like in completion
|
|
)
|
|
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
conv.dsl = json.loads(str(canvas))
|
|
API4ConversationService.append_message(conv.id, conv.to_dict())
|
|
yield get_data_openai(
|
|
id=session_id,
|
|
model=agent_id,
|
|
content="**ERROR**: " + str(e),
|
|
finish_reason="stop",
|
|
completion_tokens=len(tiktokenenc.encode("**ERROR**: " + str(e))),
|
|
prompt_tokens=prompt_tokens
|
|
)
|
|
|