mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-11-04 03:39:41 +00:00 
			
		
		
		
	### What problem does this PR solve? Fix errors detected by Ruff ### Type of change - [x] Refactoring
		
			
				
	
	
		
			154 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			154 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
#  Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
#  you may not use this file except in compliance with the License.
 | 
						|
#  You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#      http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
#  Unless required by applicable law or agreed to in writing, software
 | 
						|
#  distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
#  See the License for the specific language governing permissions and
 | 
						|
#  limitations under the License.
 | 
						|
#
 | 
						|
import logging
 | 
						|
import os
 | 
						|
from concurrent.futures import ThreadPoolExecutor
 | 
						|
import json
 | 
						|
from functools import reduce
 | 
						|
import networkx as nx
 | 
						|
from api.db import LLMType
 | 
						|
from api.db.services.llm_service import LLMBundle
 | 
						|
from api.db.services.user_service import TenantService
 | 
						|
from graphrag.community_reports_extractor import CommunityReportsExtractor
 | 
						|
from graphrag.entity_resolution import EntityResolution
 | 
						|
from graphrag.graph_extractor import GraphExtractor, DEFAULT_ENTITY_TYPES
 | 
						|
from graphrag.mind_map_extractor import MindMapExtractor
 | 
						|
from rag.nlp import rag_tokenizer
 | 
						|
from rag.utils import num_tokens_from_string
 | 
						|
 | 
						|
 | 
						|
def graph_merge(g1, g2):
 | 
						|
    g = g2.copy()
 | 
						|
    for n, attr in g1.nodes(data=True):
 | 
						|
        if n not in g2.nodes():
 | 
						|
            g.add_node(n, **attr)
 | 
						|
            continue
 | 
						|
 | 
						|
        g.nodes[n]["weight"] += 1
 | 
						|
        if g.nodes[n]["description"].lower().find(attr["description"][:32].lower()) < 0:
 | 
						|
            g.nodes[n]["description"] += "\n" + attr["description"]
 | 
						|
 | 
						|
    for source, target, attr in g1.edges(data=True):
 | 
						|
        if g.has_edge(source, target):
 | 
						|
            g[source][target].update({"weight": attr["weight"]+1})
 | 
						|
            continue
 | 
						|
        g.add_edge(source, target, **attr)
 | 
						|
 | 
						|
    for node_degree in g.degree:
 | 
						|
        g.nodes[str(node_degree[0])]["rank"] = int(node_degree[1])
 | 
						|
    return g
 | 
						|
 | 
						|
 | 
						|
def build_knowledge_graph_chunks(tenant_id: str, chunks: list[str], callback, entity_types=DEFAULT_ENTITY_TYPES):
 | 
						|
    _, tenant = TenantService.get_by_id(tenant_id)
 | 
						|
    llm_bdl = LLMBundle(tenant_id, LLMType.CHAT, tenant.llm_id)
 | 
						|
    ext = GraphExtractor(llm_bdl)
 | 
						|
    left_token_count = llm_bdl.max_length - ext.prompt_token_count - 1024
 | 
						|
    left_token_count = max(llm_bdl.max_length * 0.6, left_token_count)
 | 
						|
 | 
						|
    assert left_token_count > 0, f"The LLM context length({llm_bdl.max_length}) is smaller than prompt({ext.prompt_token_count})"
 | 
						|
 | 
						|
    BATCH_SIZE=4
 | 
						|
    texts, graphs = [], []
 | 
						|
    cnt = 0
 | 
						|
    max_workers = int(os.environ.get('GRAPH_EXTRACTOR_MAX_WORKERS', 50))
 | 
						|
    with ThreadPoolExecutor(max_workers=max_workers) as exe:
 | 
						|
        threads = []
 | 
						|
        for i in range(len(chunks)):
 | 
						|
            tkn_cnt = num_tokens_from_string(chunks[i])
 | 
						|
            if cnt+tkn_cnt >= left_token_count and texts:
 | 
						|
                for b in range(0, len(texts), BATCH_SIZE):
 | 
						|
                    threads.append(exe.submit(ext, ["\n".join(texts[b:b+BATCH_SIZE])], {"entity_types": entity_types}, callback))
 | 
						|
                texts = []
 | 
						|
                cnt = 0
 | 
						|
            texts.append(chunks[i])
 | 
						|
            cnt += tkn_cnt
 | 
						|
        if texts:
 | 
						|
            for b in range(0, len(texts), BATCH_SIZE):
 | 
						|
                threads.append(exe.submit(ext, ["\n".join(texts[b:b+BATCH_SIZE])], {"entity_types": entity_types}, callback))
 | 
						|
 | 
						|
        callback(0.5, "Extracting entities.")
 | 
						|
        graphs = []
 | 
						|
        for i, _ in enumerate(threads):
 | 
						|
            graphs.append(_.result().output)
 | 
						|
            callback(0.5 + 0.1*i/len(threads), f"Entities extraction progress ... {i+1}/{len(threads)}")
 | 
						|
 | 
						|
    graph = reduce(graph_merge, graphs) if graphs else nx.Graph()
 | 
						|
    er = EntityResolution(llm_bdl)
 | 
						|
    graph = er(graph).output
 | 
						|
 | 
						|
    _chunks = chunks
 | 
						|
    chunks = []
 | 
						|
    for n, attr in graph.nodes(data=True):
 | 
						|
        if attr.get("rank", 0) == 0:
 | 
						|
            logging.debug(f"Ignore entity: {n}")
 | 
						|
            continue
 | 
						|
        chunk = {
 | 
						|
            "name_kwd": n,
 | 
						|
            "important_kwd": [n],
 | 
						|
            "title_tks": rag_tokenizer.tokenize(n),
 | 
						|
            "content_with_weight": json.dumps({"name": n, **attr}, ensure_ascii=False),
 | 
						|
            "content_ltks": rag_tokenizer.tokenize(attr["description"]),
 | 
						|
            "knowledge_graph_kwd": "entity",
 | 
						|
            "rank_int": attr["rank"],
 | 
						|
            "weight_int": attr["weight"]
 | 
						|
        }
 | 
						|
        chunk["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(chunk["content_ltks"])
 | 
						|
        chunks.append(chunk)
 | 
						|
 | 
						|
    callback(0.6, "Extracting community reports.")
 | 
						|
    cr = CommunityReportsExtractor(llm_bdl)
 | 
						|
    cr = cr(graph, callback=callback)
 | 
						|
    for community, desc in zip(cr.structured_output, cr.output):
 | 
						|
        chunk = {
 | 
						|
            "title_tks": rag_tokenizer.tokenize(community["title"]),
 | 
						|
            "content_with_weight": desc,
 | 
						|
            "content_ltks": rag_tokenizer.tokenize(desc),
 | 
						|
            "knowledge_graph_kwd": "community_report",
 | 
						|
            "weight_flt": community["weight"],
 | 
						|
            "entities_kwd": community["entities"],
 | 
						|
            "important_kwd": community["entities"]
 | 
						|
        }
 | 
						|
        chunk["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(chunk["content_ltks"])
 | 
						|
        chunks.append(chunk)
 | 
						|
 | 
						|
    chunks.append(
 | 
						|
        {
 | 
						|
            "content_with_weight": json.dumps(nx.node_link_data(graph), ensure_ascii=False, indent=2),
 | 
						|
            "knowledge_graph_kwd": "graph"
 | 
						|
        })
 | 
						|
 | 
						|
    callback(0.75, "Extracting mind graph.")
 | 
						|
    mindmap = MindMapExtractor(llm_bdl)
 | 
						|
    mg = mindmap(_chunks).output
 | 
						|
    if not len(mg.keys()):
 | 
						|
        return chunks
 | 
						|
 | 
						|
    logging.debug(json.dumps(mg, ensure_ascii=False, indent=2))
 | 
						|
    chunks.append(
 | 
						|
        {
 | 
						|
            "content_with_weight": json.dumps(mg, ensure_ascii=False, indent=2),
 | 
						|
            "knowledge_graph_kwd": "mind_map"
 | 
						|
        })
 | 
						|
 | 
						|
    return chunks
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 |