ragflow/agent/component/retrieval.py
Song Fuchang ad4e59edb2
Don't split and strip input in retrieval component. (#6662)
### What problem does this PR solve?

Actually fix #6241 

Hello, I ran into the same problem as #6241. When I'm testing my agent
flow in the web ui using `Run` button with a file input, the retrieval
component always gave an empty output.

In the code I found that:

`web/src/pages/flow/debug-content/index.tsx`:

```tsx
const onOk = useCallback(async () => {
    const values = await form.validateFields();
    const nextValues = Object.entries(values).map(([key, value]) => {
      const item = parameters[Number(key)];
      let nextValue = value;
      if (Array.isArray(value)) {
        nextValue = ``;

        value.forEach((x) => {
          nextValue +=
            x?.originFileObj instanceof File
              ? `${x.name}\n${x.response?.data}\n----\n`    // Here, the file content always ends in '\n'
              : `${x.url}\n${x.result}\n----\n`;
        });
      }
      return { ...item, value: nextValue };
    });

    ok(nextValues);
  }, [form, ok, parameters]);
```

while in the `agent/component/retrieval.py`:

```python
def _run(self, history, **kwargs):
        query = self.get_input()
        query = str(query["content"][0]) if "content" in query else ""
        lines = query.split('\n')                     # inputs are split to ['xxx','yyy','----','']
        query = lines[-1] if lines else ""      # Here we always get '', thus no result
        kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
        if not kbs:
            return Retrieval.be_output("")
```

so the code will never got correct result.

I'm not sure why the input needs such a split here, so I just removed
the splitting, and it works well on my side.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-31 11:26:49 +08:00

112 lines
4.2 KiB
Python

#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
import pandas as pd
from api.db import LLMType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api import settings
from agent.component.base import ComponentBase, ComponentParamBase
from rag.app.tag import label_question
from rag.utils.tavily_conn import Tavily
class RetrievalParam(ComponentParamBase):
"""
Define the Retrieval component parameters.
"""
def __init__(self):
super().__init__()
self.similarity_threshold = 0.2
self.keywords_similarity_weight = 0.5
self.top_n = 8
self.top_k = 1024
self.kb_ids = []
self.rerank_id = ""
self.empty_response = ""
self.tavily_api_key = ""
self.use_kg = False
def check(self):
self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold")
self.check_decimal_float(self.keywords_similarity_weight, "[Retrieval] Keyword similarity weight")
self.check_positive_number(self.top_n, "[Retrieval] Top N")
class Retrieval(ComponentBase, ABC):
component_name = "Retrieval"
def _run(self, history, **kwargs):
query = self.get_input()
query = str(query["content"][0]) if "content" in query else ""
kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
if not kbs:
return Retrieval.be_output("")
embd_nms = list(set([kb.embd_id for kb in kbs]))
assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
embd_mdl = None
if embd_nms:
embd_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, embd_nms[0])
self._canvas.set_embedding_model(embd_nms[0])
rerank_mdl = None
if self._param.rerank_id:
rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
if kbs:
kbinfos = settings.retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
1, self._param.top_n,
self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
aggs=False, rerank_mdl=rerank_mdl,
rank_feature=label_question(query, kbs))
else:
kbinfos = {"chunks": [], "doc_aggs": []}
if self._param.use_kg and kbs:
ck = settings.kg_retrievaler.retrieval(query,
[kbs[0].tenant_id],
self._param.kb_ids,
embd_mdl,
LLMBundle(kbs[0].tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
kbinfos["chunks"].insert(0, ck)
if self._param.tavily_api_key:
tav = Tavily(self._param.tavily_api_key)
tav_res = tav.retrieve_chunks(query)
kbinfos["chunks"].extend(tav_res["chunks"])
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
if not kbinfos["chunks"]:
df = Retrieval.be_output("")
if self._param.empty_response and self._param.empty_response.strip():
df["empty_response"] = self._param.empty_response
return df
df = pd.DataFrame(kbinfos["chunks"])
df["content"] = df["content_with_weight"]
del df["content_with_weight"]
logging.debug("{} {}".format(query, df))
return df.dropna()