ragflow/api/apps/llm_app.py
Yongteng Lei 83771e500c
Refa: migrate chat models to LiteLLM (#9394)
### What problem does this PR solve?

All models pass the mock response tests, which means that if a model can
return the correct response, everything should work as expected.
However, not all models have been fully tested in a real environment,
the real API_KEY. I suggest actively monitoring the refactored models
over the coming period to ensure they work correctly and fixing them
step by step, or waiting to merge until most have been tested in
practical environment.

### Type of change

- [x] Refactoring
2025-08-12 10:59:20 +08:00

396 lines
15 KiB
Python

#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import json
from flask import request
from flask_login import login_required, current_user
from api.db.services.llm_service import LLMFactoriesService, TenantLLMService, LLMService
from api import settings
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.db import StatusEnum, LLMType
from api.db.db_models import TenantLLM
from api.utils.api_utils import get_json_result
from api.utils.base64_image import test_image
from rag.llm import EmbeddingModel, ChatModel, RerankModel, CvModel, TTSModel
@manager.route('/factories', methods=['GET']) # noqa: F821
@login_required
def factories():
try:
fac = LLMFactoriesService.get_all()
fac = [f.to_dict() for f in fac if f.name not in ["Youdao", "FastEmbed", "BAAI"]]
llms = LLMService.get_all()
mdl_types = {}
for m in llms:
if m.status != StatusEnum.VALID.value:
continue
if m.fid not in mdl_types:
mdl_types[m.fid] = set([])
mdl_types[m.fid].add(m.model_type)
for f in fac:
f["model_types"] = list(mdl_types.get(f["name"], [LLMType.CHAT, LLMType.EMBEDDING, LLMType.RERANK,
LLMType.IMAGE2TEXT, LLMType.SPEECH2TEXT, LLMType.TTS]))
return get_json_result(data=fac)
except Exception as e:
return server_error_response(e)
@manager.route('/set_api_key', methods=['POST']) # noqa: F821
@login_required
@validate_request("llm_factory", "api_key")
def set_api_key():
req = request.json
# test if api key works
chat_passed, embd_passed, rerank_passed = False, False, False
factory = req["llm_factory"]
extra = {"provider": factory}
msg = ""
for llm in LLMService.query(fid=factory):
if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
assert factory in EmbeddingModel, f"Embedding model from {factory} is not supported yet."
mdl = EmbeddingModel[factory](
req["api_key"], llm.llm_name, base_url=req.get("base_url"))
try:
arr, tc = mdl.encode(["Test if the api key is available"])
if len(arr[0]) == 0:
raise Exception("Fail")
embd_passed = True
except Exception as e:
msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
elif not chat_passed and llm.model_type == LLMType.CHAT.value:
assert factory in ChatModel, f"Chat model from {factory} is not supported yet."
mdl = ChatModel[factory](
req["api_key"], llm.llm_name, base_url=req.get("base_url"), **extra)
try:
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}],
{"temperature": 0.9, 'max_tokens': 50})
if m.find("**ERROR**") >= 0:
raise Exception(m)
chat_passed = True
except Exception as e:
msg += f"\nFail to access model({llm.fid}/{llm.llm_name}) using this api key." + str(
e)
elif not rerank_passed and llm.model_type == LLMType.RERANK:
assert factory in RerankModel, f"Re-rank model from {factory} is not supported yet."
mdl = RerankModel[factory](
req["api_key"], llm.llm_name, base_url=req.get("base_url"))
try:
arr, tc = mdl.similarity("What's the weather?", ["Is it sunny today?"])
if len(arr) == 0 or tc == 0:
raise Exception("Fail")
rerank_passed = True
logging.debug(f'passed model rerank {llm.llm_name}')
except Exception as e:
msg += f"\nFail to access model({llm.fid}/{llm.llm_name}) using this api key." + str(
e)
if any([embd_passed, chat_passed, rerank_passed]):
msg = ''
break
if msg:
return get_data_error_result(message=msg)
llm_config = {
"api_key": req["api_key"],
"api_base": req.get("base_url", "")
}
for n in ["model_type", "llm_name"]:
if n in req:
llm_config[n] = req[n]
for llm in LLMService.query(fid=factory):
llm_config["max_tokens"]=llm.max_tokens
if not TenantLLMService.filter_update(
[TenantLLM.tenant_id == current_user.id,
TenantLLM.llm_factory == factory,
TenantLLM.llm_name == llm.llm_name],
llm_config):
TenantLLMService.save(
tenant_id=current_user.id,
llm_factory=factory,
llm_name=llm.llm_name,
model_type=llm.model_type,
api_key=llm_config["api_key"],
api_base=llm_config["api_base"],
max_tokens=llm_config["max_tokens"]
)
return get_json_result(data=True)
@manager.route('/add_llm', methods=['POST']) # noqa: F821
@login_required
@validate_request("llm_factory")
def add_llm():
req = request.json
factory = req["llm_factory"]
api_key = req.get("api_key", "x")
llm_name = req.get("llm_name")
def apikey_json(keys):
nonlocal req
return json.dumps({k: req.get(k, "") for k in keys})
if factory == "VolcEngine":
# For VolcEngine, due to its special authentication method
# Assemble ark_api_key endpoint_id into api_key
api_key = apikey_json(["ark_api_key", "endpoint_id"])
elif factory == "Tencent Hunyuan":
req["api_key"] = apikey_json(["hunyuan_sid", "hunyuan_sk"])
return set_api_key()
elif factory == "Tencent Cloud":
req["api_key"] = apikey_json(["tencent_cloud_sid", "tencent_cloud_sk"])
return set_api_key()
elif factory == "Bedrock":
# For Bedrock, due to its special authentication method
# Assemble bedrock_ak, bedrock_sk, bedrock_region
api_key = apikey_json(["bedrock_ak", "bedrock_sk", "bedrock_region"])
elif factory == "LocalAI":
llm_name += "___LocalAI"
elif factory == "HuggingFace":
llm_name += "___HuggingFace"
elif factory == "OpenAI-API-Compatible":
llm_name += "___OpenAI-API"
elif factory == "VLLM":
llm_name += "___VLLM"
elif factory == "XunFei Spark":
if req["model_type"] == "chat":
api_key = req.get("spark_api_password", "")
elif req["model_type"] == "tts":
api_key = apikey_json(["spark_app_id", "spark_api_secret", "spark_api_key"])
elif factory == "BaiduYiyan":
api_key = apikey_json(["yiyan_ak", "yiyan_sk"])
elif factory == "Fish Audio":
api_key = apikey_json(["fish_audio_ak", "fish_audio_refid"])
elif factory == "Google Cloud":
api_key = apikey_json(["google_project_id", "google_region", "google_service_account_key"])
elif factory == "Azure-OpenAI":
api_key = apikey_json(["api_key", "api_version"])
llm = {
"tenant_id": current_user.id,
"llm_factory": factory,
"model_type": req["model_type"],
"llm_name": llm_name,
"api_base": req.get("api_base", ""),
"api_key": api_key,
"max_tokens": req.get("max_tokens")
}
msg = ""
mdl_nm = llm["llm_name"].split("___")[0]
extra = {"provider": factory}
if llm["model_type"] == LLMType.EMBEDDING.value:
assert factory in EmbeddingModel, f"Embedding model from {factory} is not supported yet."
mdl = EmbeddingModel[factory](
key=llm['api_key'],
model_name=mdl_nm,
base_url=llm["api_base"])
try:
arr, tc = mdl.encode(["Test if the api key is available"])
if len(arr[0]) == 0:
raise Exception("Fail")
except Exception as e:
msg += f"\nFail to access embedding model({mdl_nm})." + str(e)
elif llm["model_type"] == LLMType.CHAT.value:
assert factory in ChatModel, f"Chat model from {factory} is not supported yet."
mdl = ChatModel[factory](
key=llm['api_key'],
model_name=mdl_nm,
base_url=llm["api_base"],
**extra,
)
try:
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
"temperature": 0.9})
if not tc and m.find("**ERROR**:") >= 0:
raise Exception(m)
except Exception as e:
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(
e)
elif llm["model_type"] == LLMType.RERANK:
assert factory in RerankModel, f"RE-rank model from {factory} is not supported yet."
try:
mdl = RerankModel[factory](
key=llm["api_key"],
model_name=mdl_nm,
base_url=llm["api_base"]
)
arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!", "Ohh, my friend!"])
if len(arr) == 0:
raise Exception("Not known.")
except KeyError:
msg += f"{factory} dose not support this model({factory}/{mdl_nm})"
except Exception as e:
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(
e)
elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
assert factory in CvModel, f"Image to text model from {factory} is not supported yet."
mdl = CvModel[factory](
key=llm["api_key"],
model_name=mdl_nm,
base_url=llm["api_base"]
)
try:
image_data = test_image
m, tc = mdl.describe(image_data)
if not m and not tc:
raise Exception(m)
except Exception as e:
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)
elif llm["model_type"] == LLMType.TTS:
assert factory in TTSModel, f"TTS model from {factory} is not supported yet."
mdl = TTSModel[factory](
key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"]
)
try:
for resp in mdl.tts("Hello~ Ragflower!"):
pass
except RuntimeError as e:
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)
else:
# TODO: check other type of models
pass
if msg:
return get_data_error_result(message=msg)
if not TenantLLMService.filter_update(
[TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory,
TenantLLM.llm_name == llm["llm_name"]], llm):
TenantLLMService.save(**llm)
return get_json_result(data=True)
@manager.route('/delete_llm', methods=['POST']) # noqa: F821
@login_required
@validate_request("llm_factory", "llm_name")
def delete_llm():
req = request.json
TenantLLMService.filter_delete(
[TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"],
TenantLLM.llm_name == req["llm_name"]])
return get_json_result(data=True)
@manager.route('/delete_factory', methods=['POST']) # noqa: F821
@login_required
@validate_request("llm_factory")
def delete_factory():
req = request.json
TenantLLMService.filter_delete(
[TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"]])
return get_json_result(data=True)
@manager.route('/my_llms', methods=['GET']) # noqa: F821
@login_required
def my_llms():
try:
include_details = request.args.get('include_details', 'false').lower() == 'true'
if include_details:
res = {}
objs = TenantLLMService.query(tenant_id=current_user.id)
factories = LLMFactoriesService.query(status=StatusEnum.VALID.value)
for o in objs:
o_dict = o.to_dict()
factory_tags = None
for f in factories:
if f.name == o_dict["llm_factory"]:
factory_tags = f.tags
break
if o_dict["llm_factory"] not in res:
res[o_dict["llm_factory"]] = {
"tags": factory_tags,
"llm": []
}
res[o_dict["llm_factory"]]["llm"].append({
"type": o_dict["model_type"],
"name": o_dict["llm_name"],
"used_token": o_dict["used_tokens"],
"api_base": o_dict["api_base"] or "",
"max_tokens": o_dict["max_tokens"] or 8192
})
else:
res = {}
for o in TenantLLMService.get_my_llms(current_user.id):
if o["llm_factory"] not in res:
res[o["llm_factory"]] = {
"tags": o["tags"],
"llm": []
}
res[o["llm_factory"]]["llm"].append({
"type": o["model_type"],
"name": o["llm_name"],
"used_token": o["used_tokens"]
})
return get_json_result(data=res)
except Exception as e:
return server_error_response(e)
@manager.route('/list', methods=['GET']) # noqa: F821
@login_required
def list_app():
self_deployed = ["Youdao", "FastEmbed", "BAAI", "Ollama", "Xinference", "LocalAI", "LM-Studio", "GPUStack"]
weighted = ["Youdao", "FastEmbed", "BAAI"] if settings.LIGHTEN != 0 else []
model_type = request.args.get("model_type")
try:
objs = TenantLLMService.query(tenant_id=current_user.id)
facts = set([o.to_dict()["llm_factory"] for o in objs if o.api_key])
llms = LLMService.get_all()
llms = [m.to_dict()
for m in llms if m.status == StatusEnum.VALID.value and m.fid not in weighted]
for m in llms:
m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in self_deployed
llm_set = set([m["llm_name"] + "@" + m["fid"] for m in llms])
for o in objs:
if o.llm_name + "@" + o.llm_factory in llm_set:
continue
llms.append({"llm_name": o.llm_name, "model_type": o.model_type, "fid": o.llm_factory, "available": True})
res = {}
for m in llms:
if model_type and m["model_type"].find(model_type) < 0:
continue
if m["fid"] not in res:
res[m["fid"]] = []
res[m["fid"]].append(m)
return get_json_result(data=res)
except Exception as e:
return server_error_response(e)