mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-11-04 03:39:41 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			373 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			373 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
#  Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
#  you may not use this file except in compliance with the License.
 | 
						|
#  You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#      http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
#  Unless required by applicable law or agreed to in writing, software
 | 
						|
#  distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
#  See the License for the specific language governing permissions and
 | 
						|
#  limitations under the License.
 | 
						|
#
 | 
						|
import datetime
 | 
						|
import json
 | 
						|
 | 
						|
from flask import request
 | 
						|
from flask_login import login_required, current_user
 | 
						|
 | 
						|
from rag.app.qa import rmPrefix, beAdoc
 | 
						|
from rag.app.tag import label_question
 | 
						|
from rag.nlp import search, rag_tokenizer
 | 
						|
from rag.prompts import keyword_extraction
 | 
						|
from rag.settings import PAGERANK_FLD
 | 
						|
from rag.utils import rmSpace
 | 
						|
from api.db import LLMType, ParserType
 | 
						|
from api.db.services.knowledgebase_service import KnowledgebaseService
 | 
						|
from api.db.services.llm_service import LLMBundle
 | 
						|
from api.db.services.user_service import UserTenantService
 | 
						|
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
 | 
						|
from api.db.services.document_service import DocumentService
 | 
						|
from api import settings
 | 
						|
from api.utils.api_utils import get_json_result
 | 
						|
import xxhash
 | 
						|
import re
 | 
						|
 | 
						|
 | 
						|
@manager.route('/list', methods=['POST'])  # noqa: F821
 | 
						|
@login_required
 | 
						|
@validate_request("doc_id")
 | 
						|
def list_chunk():
 | 
						|
    req = request.json
 | 
						|
    doc_id = req["doc_id"]
 | 
						|
    page = int(req.get("page", 1))
 | 
						|
    size = int(req.get("size", 30))
 | 
						|
    question = req.get("keywords", "")
 | 
						|
    try:
 | 
						|
        tenant_id = DocumentService.get_tenant_id(req["doc_id"])
 | 
						|
        if not tenant_id:
 | 
						|
            return get_data_error_result(message="Tenant not found!")
 | 
						|
        e, doc = DocumentService.get_by_id(doc_id)
 | 
						|
        if not e:
 | 
						|
            return get_data_error_result(message="Document not found!")
 | 
						|
        kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
 | 
						|
        query = {
 | 
						|
            "doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
 | 
						|
        }
 | 
						|
        if "available_int" in req:
 | 
						|
            query["available_int"] = int(req["available_int"])
 | 
						|
        sres = settings.retrievaler.search(query, search.index_name(tenant_id), kb_ids, highlight=True)
 | 
						|
        res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
 | 
						|
        for id in sres.ids:
 | 
						|
            d = {
 | 
						|
                "chunk_id": id,
 | 
						|
                "content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[
 | 
						|
                    id].get(
 | 
						|
                    "content_with_weight", ""),
 | 
						|
                "doc_id": sres.field[id]["doc_id"],
 | 
						|
                "docnm_kwd": sres.field[id]["docnm_kwd"],
 | 
						|
                "important_kwd": sres.field[id].get("important_kwd", []),
 | 
						|
                "question_kwd": sres.field[id].get("question_kwd", []),
 | 
						|
                "image_id": sres.field[id].get("img_id", ""),
 | 
						|
                "available_int": int(sres.field[id].get("available_int", 1)),
 | 
						|
                "positions": sres.field[id].get("position_int", []),
 | 
						|
            }
 | 
						|
            assert isinstance(d["positions"], list)
 | 
						|
            assert len(d["positions"]) == 0 or (isinstance(d["positions"][0], list) and len(d["positions"][0]) == 5)
 | 
						|
            res["chunks"].append(d)
 | 
						|
        return get_json_result(data=res)
 | 
						|
    except Exception as e:
 | 
						|
        if str(e).find("not_found") > 0:
 | 
						|
            return get_json_result(data=False, message='No chunk found!',
 | 
						|
                                   code=settings.RetCode.DATA_ERROR)
 | 
						|
        return server_error_response(e)
 | 
						|
 | 
						|
 | 
						|
@manager.route('/get', methods=['GET'])  # noqa: F821
 | 
						|
@login_required
 | 
						|
def get():
 | 
						|
    chunk_id = request.args["chunk_id"]
 | 
						|
    try:
 | 
						|
        tenants = UserTenantService.query(user_id=current_user.id)
 | 
						|
        if not tenants:
 | 
						|
            return get_data_error_result(message="Tenant not found!")
 | 
						|
        for tenant in tenants:
 | 
						|
            kb_ids = KnowledgebaseService.get_kb_ids(tenant.tenant_id)
 | 
						|
            chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant.tenant_id), kb_ids)
 | 
						|
            if chunk:
 | 
						|
                break
 | 
						|
        if chunk is None:
 | 
						|
            return server_error_response(Exception("Chunk not found"))
 | 
						|
 | 
						|
        k = []
 | 
						|
        for n in chunk.keys():
 | 
						|
            if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
 | 
						|
                k.append(n)
 | 
						|
        for n in k:
 | 
						|
            del chunk[n]
 | 
						|
 | 
						|
        return get_json_result(data=chunk)
 | 
						|
    except Exception as e:
 | 
						|
        if str(e).find("NotFoundError") >= 0:
 | 
						|
            return get_json_result(data=False, message='Chunk not found!',
 | 
						|
                                   code=settings.RetCode.DATA_ERROR)
 | 
						|
        return server_error_response(e)
 | 
						|
 | 
						|
 | 
						|
@manager.route('/set', methods=['POST'])  # noqa: F821
 | 
						|
@login_required
 | 
						|
@validate_request("doc_id", "chunk_id", "content_with_weight")
 | 
						|
def set():
 | 
						|
    req = request.json
 | 
						|
    d = {
 | 
						|
        "id": req["chunk_id"],
 | 
						|
        "content_with_weight": req["content_with_weight"]}
 | 
						|
    d["content_ltks"] = rag_tokenizer.tokenize(req["content_with_weight"])
 | 
						|
    d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
 | 
						|
    if "important_kwd" in req:
 | 
						|
        d["important_kwd"] = req["important_kwd"]
 | 
						|
        d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_kwd"]))
 | 
						|
    if "question_kwd" in req:
 | 
						|
        d["question_kwd"] = req["question_kwd"]
 | 
						|
        d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["question_kwd"]))
 | 
						|
    if "tag_kwd" in req:
 | 
						|
        d["tag_kwd"] = req["tag_kwd"]
 | 
						|
    if "tag_feas" in req:
 | 
						|
        d["tag_feas"] = req["tag_feas"]
 | 
						|
    if "available_int" in req:
 | 
						|
        d["available_int"] = req["available_int"]
 | 
						|
 | 
						|
    try:
 | 
						|
        tenant_id = DocumentService.get_tenant_id(req["doc_id"])
 | 
						|
        if not tenant_id:
 | 
						|
            return get_data_error_result(message="Tenant not found!")
 | 
						|
 | 
						|
        embd_id = DocumentService.get_embd_id(req["doc_id"])
 | 
						|
        embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_id)
 | 
						|
 | 
						|
        e, doc = DocumentService.get_by_id(req["doc_id"])
 | 
						|
        if not e:
 | 
						|
            return get_data_error_result(message="Document not found!")
 | 
						|
 | 
						|
        if doc.parser_id == ParserType.QA:
 | 
						|
            arr = [
 | 
						|
                t for t in re.split(
 | 
						|
                    r"[\n\t]",
 | 
						|
                    req["content_with_weight"]) if len(t) > 1]
 | 
						|
            q, a = rmPrefix(arr[0]), rmPrefix("\n".join(arr[1:]))
 | 
						|
            d = beAdoc(d, q, a, not any(
 | 
						|
                [rag_tokenizer.is_chinese(t) for t in q + a]))
 | 
						|
 | 
						|
        v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d.get("question_kwd") else "\n".join(d["question_kwd"])])
 | 
						|
        v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
 | 
						|
        d["q_%d_vec" % len(v)] = v.tolist()
 | 
						|
        settings.docStoreConn.update({"id": req["chunk_id"]}, d, search.index_name(tenant_id), doc.kb_id)
 | 
						|
        return get_json_result(data=True)
 | 
						|
    except Exception as e:
 | 
						|
        return server_error_response(e)
 | 
						|
 | 
						|
 | 
						|
@manager.route('/switch', methods=['POST'])  # noqa: F821
 | 
						|
@login_required
 | 
						|
@validate_request("chunk_ids", "available_int", "doc_id")
 | 
						|
def switch():
 | 
						|
    req = request.json
 | 
						|
    try:
 | 
						|
        e, doc = DocumentService.get_by_id(req["doc_id"])
 | 
						|
        if not e:
 | 
						|
            return get_data_error_result(message="Document not found!")
 | 
						|
        for cid in req["chunk_ids"]:
 | 
						|
            if not settings.docStoreConn.update({"id": cid},
 | 
						|
                                                {"available_int": int(req["available_int"])},
 | 
						|
                                                search.index_name(DocumentService.get_tenant_id(req["doc_id"])),
 | 
						|
                                                doc.kb_id):
 | 
						|
                return get_data_error_result(message="Index updating failure")
 | 
						|
        return get_json_result(data=True)
 | 
						|
    except Exception as e:
 | 
						|
        return server_error_response(e)
 | 
						|
 | 
						|
 | 
						|
@manager.route('/rm', methods=['POST'])  # noqa: F821
 | 
						|
@login_required
 | 
						|
@validate_request("chunk_ids", "doc_id")
 | 
						|
def rm():
 | 
						|
    req = request.json
 | 
						|
    try:
 | 
						|
        e, doc = DocumentService.get_by_id(req["doc_id"])
 | 
						|
        if not e:
 | 
						|
            return get_data_error_result(message="Document not found!")
 | 
						|
        if not settings.docStoreConn.delete({"id": req["chunk_ids"]}, search.index_name(current_user.id), doc.kb_id):
 | 
						|
            return get_data_error_result(message="Index updating failure")
 | 
						|
        deleted_chunk_ids = req["chunk_ids"]
 | 
						|
        chunk_number = len(deleted_chunk_ids)
 | 
						|
        DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
 | 
						|
        return get_json_result(data=True)
 | 
						|
    except Exception as e:
 | 
						|
        return server_error_response(e)
 | 
						|
 | 
						|
 | 
						|
@manager.route('/create', methods=['POST'])  # noqa: F821
 | 
						|
@login_required
 | 
						|
@validate_request("doc_id", "content_with_weight")
 | 
						|
def create():
 | 
						|
    req = request.json
 | 
						|
    chunck_id = xxhash.xxh64((req["content_with_weight"] + req["doc_id"]).encode("utf-8")).hexdigest()
 | 
						|
    d = {"id": chunck_id, "content_ltks": rag_tokenizer.tokenize(req["content_with_weight"]),
 | 
						|
         "content_with_weight": req["content_with_weight"]}
 | 
						|
    d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
 | 
						|
    d["important_kwd"] = req.get("important_kwd", [])
 | 
						|
    d["important_tks"] = rag_tokenizer.tokenize(" ".join(req.get("important_kwd", [])))
 | 
						|
    d["question_kwd"] = req.get("question_kwd", [])
 | 
						|
    d["question_tks"] = rag_tokenizer.tokenize("\n".join(req.get("question_kwd", [])))
 | 
						|
    d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
 | 
						|
    d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
 | 
						|
 | 
						|
    try:
 | 
						|
        e, doc = DocumentService.get_by_id(req["doc_id"])
 | 
						|
        if not e:
 | 
						|
            return get_data_error_result(message="Document not found!")
 | 
						|
        d["kb_id"] = [doc.kb_id]
 | 
						|
        d["docnm_kwd"] = doc.name
 | 
						|
        d["title_tks"] = rag_tokenizer.tokenize(doc.name)
 | 
						|
        d["doc_id"] = doc.id
 | 
						|
 | 
						|
        tenant_id = DocumentService.get_tenant_id(req["doc_id"])
 | 
						|
        if not tenant_id:
 | 
						|
            return get_data_error_result(message="Tenant not found!")
 | 
						|
 | 
						|
        e, kb = KnowledgebaseService.get_by_id(doc.kb_id)
 | 
						|
        if not e:
 | 
						|
            return get_data_error_result(message="Knowledgebase not found!")
 | 
						|
        if kb.pagerank:
 | 
						|
            d[PAGERANK_FLD] = kb.pagerank
 | 
						|
 | 
						|
        embd_id = DocumentService.get_embd_id(req["doc_id"])
 | 
						|
        embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING.value, embd_id)
 | 
						|
 | 
						|
        v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d["question_kwd"] else "\n".join(d["question_kwd"])])
 | 
						|
        v = 0.1 * v[0] + 0.9 * v[1]
 | 
						|
        d["q_%d_vec" % len(v)] = v.tolist()
 | 
						|
        settings.docStoreConn.insert([d], search.index_name(tenant_id), doc.kb_id)
 | 
						|
 | 
						|
        DocumentService.increment_chunk_num(
 | 
						|
            doc.id, doc.kb_id, c, 1, 0)
 | 
						|
        return get_json_result(data={"chunk_id": chunck_id})
 | 
						|
    except Exception as e:
 | 
						|
        return server_error_response(e)
 | 
						|
 | 
						|
 | 
						|
@manager.route('/retrieval_test', methods=['POST'])  # noqa: F821
 | 
						|
@login_required
 | 
						|
@validate_request("kb_id", "question")
 | 
						|
def retrieval_test():
 | 
						|
    req = request.json
 | 
						|
    page = int(req.get("page", 1))
 | 
						|
    size = int(req.get("size", 30))
 | 
						|
    question = req["question"]
 | 
						|
    kb_ids = req["kb_id"]
 | 
						|
    if isinstance(kb_ids, str):
 | 
						|
        kb_ids = [kb_ids]
 | 
						|
    doc_ids = req.get("doc_ids", [])
 | 
						|
    similarity_threshold = float(req.get("similarity_threshold", 0.0))
 | 
						|
    vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
 | 
						|
    use_kg = req.get("use_kg", False)
 | 
						|
    top = int(req.get("top_k", 1024))
 | 
						|
    tenant_ids = []
 | 
						|
 | 
						|
    try:
 | 
						|
        tenants = UserTenantService.query(user_id=current_user.id)
 | 
						|
        for kb_id in kb_ids:
 | 
						|
            for tenant in tenants:
 | 
						|
                if KnowledgebaseService.query(
 | 
						|
                        tenant_id=tenant.tenant_id, id=kb_id):
 | 
						|
                    tenant_ids.append(tenant.tenant_id)
 | 
						|
                    break
 | 
						|
            else:
 | 
						|
                return get_json_result(
 | 
						|
                    data=False, message='Only owner of knowledgebase authorized for this operation.',
 | 
						|
                    code=settings.RetCode.OPERATING_ERROR)
 | 
						|
 | 
						|
        e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
 | 
						|
        if not e:
 | 
						|
            return get_data_error_result(message="Knowledgebase not found!")
 | 
						|
 | 
						|
        embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
 | 
						|
 | 
						|
        rerank_mdl = None
 | 
						|
        if req.get("rerank_id"):
 | 
						|
            rerank_mdl = LLMBundle(kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
 | 
						|
 | 
						|
        if req.get("keyword", False):
 | 
						|
            chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
 | 
						|
            question += keyword_extraction(chat_mdl, question)
 | 
						|
 | 
						|
        labels = label_question(question, [kb])
 | 
						|
        ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
 | 
						|
                               similarity_threshold, vector_similarity_weight, top,
 | 
						|
                               doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"),
 | 
						|
                               rank_feature=labels
 | 
						|
                               )
 | 
						|
        if use_kg:
 | 
						|
            ck = settings.kg_retrievaler.retrieval(question,
 | 
						|
                                                   tenant_ids,
 | 
						|
                                                   kb_ids,
 | 
						|
                                                   embd_mdl,
 | 
						|
                                                   LLMBundle(kb.tenant_id, LLMType.CHAT))
 | 
						|
            if ck["content_with_weight"]:
 | 
						|
                ranks["chunks"].insert(0, ck)
 | 
						|
 | 
						|
        for c in ranks["chunks"]:
 | 
						|
            c.pop("vector", None)
 | 
						|
        ranks["labels"] = labels
 | 
						|
 | 
						|
        return get_json_result(data=ranks)
 | 
						|
    except Exception as e:
 | 
						|
        if str(e).find("not_found") > 0:
 | 
						|
            return get_json_result(data=False, message='No chunk found! Check the chunk status please!',
 | 
						|
                                   code=settings.RetCode.DATA_ERROR)
 | 
						|
        return server_error_response(e)
 | 
						|
 | 
						|
 | 
						|
@manager.route('/knowledge_graph', methods=['GET'])  # noqa: F821
 | 
						|
@login_required
 | 
						|
def knowledge_graph():
 | 
						|
    doc_id = request.args["doc_id"]
 | 
						|
    tenant_id = DocumentService.get_tenant_id(doc_id)
 | 
						|
    kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
 | 
						|
    req = {
 | 
						|
        "doc_ids": [doc_id],
 | 
						|
        "knowledge_graph_kwd": ["graph", "mind_map"]
 | 
						|
    }
 | 
						|
    sres = settings.retrievaler.search(req, search.index_name(tenant_id), kb_ids)
 | 
						|
    obj = {"graph": {}, "mind_map": {}}
 | 
						|
    for id in sres.ids[:2]:
 | 
						|
        ty = sres.field[id]["knowledge_graph_kwd"]
 | 
						|
        try:
 | 
						|
            content_json = json.loads(sres.field[id]["content_with_weight"])
 | 
						|
        except Exception:
 | 
						|
            continue
 | 
						|
 | 
						|
        if ty == 'mind_map':
 | 
						|
            node_dict = {}
 | 
						|
 | 
						|
            def repeat_deal(content_json, node_dict):
 | 
						|
                if 'id' in content_json:
 | 
						|
                    if content_json['id'] in node_dict:
 | 
						|
                        node_name = content_json['id']
 | 
						|
                        content_json['id'] += f"({node_dict[content_json['id']]})"
 | 
						|
                        node_dict[node_name] += 1
 | 
						|
                    else:
 | 
						|
                        node_dict[content_json['id']] = 1
 | 
						|
                if 'children' in content_json and content_json['children']:
 | 
						|
                    for item in content_json['children']:
 | 
						|
                        repeat_deal(item, node_dict)
 | 
						|
 | 
						|
            repeat_deal(content_json, node_dict)
 | 
						|
 | 
						|
        obj[ty] = content_json
 | 
						|
 | 
						|
    return get_json_result(data=obj)
 |