ragflow/rag/raptor.py
Yongteng Lei 908450509f
Feat: add fault-tolerant mechanism to RAPTOR (#11206)
### What problem does this PR solve?

Add fault-tolerant mechanism to RAPTOR.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-11-13 18:48:07 +08:00

221 lines
9.1 KiB
Python

#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import re
import numpy as np
import trio
import umap
from sklearn.mixture import GaussianMixture
from api.db.services.task_service import has_canceled
from common.connection_utils import timeout
from common.exceptions import TaskCanceledException
from common.token_utils import truncate
from graphrag.utils import (
chat_limiter,
get_embed_cache,
get_llm_cache,
set_embed_cache,
set_llm_cache,
)
class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
def __init__(
self,
max_cluster,
llm_model,
embd_model,
prompt,
max_token=512,
threshold=0.1,
max_errors=3,
):
self._max_cluster = max_cluster
self._llm_model = llm_model
self._embd_model = embd_model
self._threshold = threshold
self._prompt = prompt
self._max_token = max_token
self._max_errors = max(1, max_errors)
self._error_count = 0
@timeout(60 * 20)
async def _chat(self, system, history, gen_conf):
cached = await trio.to_thread.run_sync(lambda: get_llm_cache(self._llm_model.llm_name, system, history, gen_conf))
if cached:
return cached
last_exc = None
for attempt in range(3):
try:
response = await trio.to_thread.run_sync(lambda: self._llm_model.chat(system, history, gen_conf))
response = re.sub(r"^.*</think>", "", response, flags=re.DOTALL)
if response.find("**ERROR**") >= 0:
raise Exception(response)
await trio.to_thread.run_sync(lambda: set_llm_cache(self._llm_model.llm_name, system, response, history, gen_conf))
return response
except Exception as exc:
last_exc = exc
logging.warning("RAPTOR LLM call failed on attempt %d/3: %s", attempt + 1, exc)
if attempt < 2:
await trio.sleep(1 + attempt)
raise last_exc if last_exc else Exception("LLM chat failed without exception")
@timeout(20)
async def _embedding_encode(self, txt):
response = await trio.to_thread.run_sync(lambda: get_embed_cache(self._embd_model.llm_name, txt))
if response is not None:
return response
embds, _ = await trio.to_thread.run_sync(lambda: self._embd_model.encode([txt]))
if len(embds) < 1 or len(embds[0]) < 1:
raise Exception("Embedding error: ")
embds = embds[0]
await trio.to_thread.run_sync(lambda: set_embed_cache(self._embd_model.llm_name, txt, embds))
return embds
def _get_optimal_clusters(self, embeddings: np.ndarray, random_state: int, task_id: str = ""):
max_clusters = min(self._max_cluster, len(embeddings))
n_clusters = np.arange(1, max_clusters)
bics = []
for n in n_clusters:
if task_id:
if has_canceled(task_id):
logging.info(f"Task {task_id} cancelled during get optimal clusters.")
raise TaskCanceledException(f"Task {task_id} was cancelled")
gm = GaussianMixture(n_components=n, random_state=random_state)
gm.fit(embeddings)
bics.append(gm.bic(embeddings))
optimal_clusters = n_clusters[np.argmin(bics)]
return optimal_clusters
async def __call__(self, chunks, random_state, callback=None, task_id: str = ""):
if len(chunks) <= 1:
return []
chunks = [(s, a) for s, a in chunks if s and a is not None and len(a) > 0]
layers = [(0, len(chunks))]
start, end = 0, len(chunks)
@timeout(60 * 20)
async def summarize(ck_idx: list[int]):
nonlocal chunks
if task_id:
if has_canceled(task_id):
logging.info(f"Task {task_id} cancelled during RAPTOR summarization.")
raise TaskCanceledException(f"Task {task_id} was cancelled")
texts = [chunks[i][0] for i in ck_idx]
len_per_chunk = int((self._llm_model.max_length - self._max_token) / len(texts))
cluster_content = "\n".join([truncate(t, max(1, len_per_chunk)) for t in texts])
try:
async with chat_limiter:
if task_id and has_canceled(task_id):
logging.info(f"Task {task_id} cancelled before RAPTOR LLM call.")
raise TaskCanceledException(f"Task {task_id} was cancelled")
cnt = await self._chat(
"You're a helpful assistant.",
[
{
"role": "user",
"content": self._prompt.format(cluster_content=cluster_content),
}
],
{"max_tokens": max(self._max_token, 512)}, # fix issue: #10235
)
cnt = re.sub(
"(······\n由于长度的原因,回答被截断了,要继续吗?|For the content length reason, it stopped, continue?)",
"",
cnt,
)
logging.debug(f"SUM: {cnt}")
if task_id and has_canceled(task_id):
logging.info(f"Task {task_id} cancelled before RAPTOR embedding.")
raise TaskCanceledException(f"Task {task_id} was cancelled")
embds = await self._embedding_encode(cnt)
chunks.append((cnt, embds))
except TaskCanceledException:
raise
except Exception as exc:
self._error_count += 1
warn_msg = f"[RAPTOR] Skip cluster ({len(ck_idx)} chunks) due to error: {exc}"
logging.warning(warn_msg)
if callback:
callback(msg=warn_msg)
if self._error_count >= self._max_errors:
raise RuntimeError(f"RAPTOR aborted after {self._error_count} errors. Last error: {exc}") from exc
labels = []
while end - start > 1:
if task_id:
if has_canceled(task_id):
logging.info(f"Task {task_id} cancelled during RAPTOR layer processing.")
raise TaskCanceledException(f"Task {task_id} was cancelled")
embeddings = [embd for _, embd in chunks[start:end]]
if len(embeddings) == 2:
await summarize([start, start + 1])
if callback:
callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end))
labels.extend([0, 0])
layers.append((end, len(chunks)))
start = end
end = len(chunks)
continue
n_neighbors = int((len(embeddings) - 1) ** 0.8)
reduced_embeddings = umap.UMAP(
n_neighbors=max(2, n_neighbors),
n_components=min(12, len(embeddings) - 2),
metric="cosine",
).fit_transform(embeddings)
n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state, task_id=task_id)
if n_clusters == 1:
lbls = [0 for _ in range(len(reduced_embeddings))]
else:
gm = GaussianMixture(n_components=n_clusters, random_state=random_state)
gm.fit(reduced_embeddings)
probs = gm.predict_proba(reduced_embeddings)
lbls = [np.where(prob > self._threshold)[0] for prob in probs]
lbls = [lbl[0] if isinstance(lbl, np.ndarray) else lbl for lbl in lbls]
async with trio.open_nursery() as nursery:
for c in range(n_clusters):
ck_idx = [i + start for i in range(len(lbls)) if lbls[i] == c]
assert len(ck_idx) > 0
if task_id and has_canceled(task_id):
logging.info(f"Task {task_id} cancelled before RAPTOR cluster processing.")
raise TaskCanceledException(f"Task {task_id} was cancelled")
nursery.start_soon(summarize, ck_idx)
assert len(chunks) - end == n_clusters, "{} vs. {}".format(len(chunks) - end, n_clusters)
labels.extend(lbls)
layers.append((end, len(chunks)))
if callback:
callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end))
start = end
end = len(chunks)
return chunks