mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-09-26 08:34:02 +00:00

### What problem does this PR solve? image_version: v0.19.1 This PR fixes a bug in the HuggingFaceEmBedding API method that was causing AssertionError: assert len(vects) == len(docs) during the document embedding process. #### Problem The HuggingFaceEmbed.encode() method had an early return statement inside the for loop, causing it to return after processing only the first text input instead of processing all texts in the input list. **Error Messenge** ```python AssertionError: assert len(vects) == len(docs) # input chunks != embedded vectors from embedding api File "/ragflow/rag/svr/task_executor.py", line 442, in embedding ``` **Buggy code(/ragflow/rag/llm/embedding_model.py)** ```python class HuggingFaceEmbed(Base): def __init__(self, key, model_name, base_url=None): if not model_name: raise ValueError("Model name cannot be None") self.key = key self.model_name = model_name.split("___")[0] self.base_url = base_url or "http://127.0.0.1:8080" def encode(self, texts: list): embeddings = [] for text in texts: response = requests.post(...) if response.status_code == 200: try: embedding = response.json() embeddings.append(embedding[0]) # ❌ Early return return np.array(embeddings), sum([num_tokens_from_string(text) for text in texts]) except Exception as _e: log_exception(_e, response) else: raise Exception(...) ``` **Fixed Code(I just Rollback this function to the v0.19.0 version)** ```python Class HuggingFaceEmbed(Base): def __init__(self, key, model_name, base_url=None): if not model_name: raise ValueError("Model name cannot be None") self.key = key self.model_name = model_name.split("___")[0] self.base_url = base_url or "http://127.0.0.1:8080" def encode(self, texts: list): embeddings = [] for text in texts: response = requests.post(...) if response.status_code == 200: embedding = response.json() embeddings.append(embedding[0]) # ✅ Only append, no return else: raise Exception(...) return np.array(embeddings), sum([num_tokens_from_string(text) for text in texts]) # ✅ Return after processing all ``` ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
914 lines
33 KiB
Python
914 lines
33 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import logging
|
|
import re
|
|
import threading
|
|
from urllib.parse import urljoin
|
|
|
|
import requests
|
|
from huggingface_hub import snapshot_download
|
|
from zhipuai import ZhipuAI
|
|
import os
|
|
from abc import ABC
|
|
from ollama import Client
|
|
import dashscope
|
|
from openai import OpenAI
|
|
import numpy as np
|
|
import asyncio
|
|
|
|
from api import settings
|
|
from api.utils.file_utils import get_home_cache_dir
|
|
from api.utils.log_utils import log_exception
|
|
from rag.utils import num_tokens_from_string, truncate
|
|
import google.generativeai as genai
|
|
import json
|
|
|
|
|
|
class Base(ABC):
|
|
def __init__(self, key, model_name):
|
|
pass
|
|
|
|
def encode(self, texts: list):
|
|
raise NotImplementedError("Please implement encode method!")
|
|
|
|
def encode_queries(self, text: str):
|
|
raise NotImplementedError("Please implement encode method!")
|
|
|
|
def total_token_count(self, resp):
|
|
try:
|
|
return resp.usage.total_tokens
|
|
except Exception:
|
|
pass
|
|
try:
|
|
return resp["usage"]["total_tokens"]
|
|
except Exception:
|
|
pass
|
|
return 0
|
|
|
|
|
|
class DefaultEmbedding(Base):
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
|
_model = None
|
|
_model_name = ""
|
|
_model_lock = threading.Lock()
|
|
|
|
def __init__(self, key, model_name, **kwargs):
|
|
"""
|
|
If you have trouble downloading HuggingFace models, -_^ this might help!!
|
|
|
|
For Linux:
|
|
export HF_ENDPOINT=https://hf-mirror.com
|
|
|
|
For Windows:
|
|
Good luck
|
|
^_-
|
|
|
|
"""
|
|
if not settings.LIGHTEN:
|
|
with DefaultEmbedding._model_lock:
|
|
from FlagEmbedding import FlagModel
|
|
import torch
|
|
if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
|
|
try:
|
|
DefaultEmbedding._model = FlagModel(os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
|
|
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
|
|
use_fp16=torch.cuda.is_available())
|
|
DefaultEmbedding._model_name = model_name
|
|
except Exception:
|
|
model_dir = snapshot_download(repo_id="BAAI/bge-large-zh-v1.5",
|
|
local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
|
|
local_dir_use_symlinks=False)
|
|
DefaultEmbedding._model = FlagModel(model_dir,
|
|
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
|
|
use_fp16=torch.cuda.is_available())
|
|
self._model = DefaultEmbedding._model
|
|
self._model_name = DefaultEmbedding._model_name
|
|
|
|
def encode(self, texts: list):
|
|
batch_size = 16
|
|
texts = [truncate(t, 2048) for t in texts]
|
|
token_count = 0
|
|
for t in texts:
|
|
token_count += num_tokens_from_string(t)
|
|
ress = []
|
|
for i in range(0, len(texts), batch_size):
|
|
ress.extend(self._model.encode(texts[i:i + batch_size]).tolist())
|
|
return np.array(ress), token_count
|
|
|
|
def encode_queries(self, text: str):
|
|
token_count = num_tokens_from_string(text)
|
|
return self._model.encode_queries([text]).tolist()[0], token_count
|
|
|
|
|
|
class OpenAIEmbed(Base):
|
|
def __init__(self, key, model_name="text-embedding-ada-002",
|
|
base_url="https://api.openai.com/v1"):
|
|
if not base_url:
|
|
base_url = "https://api.openai.com/v1"
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list):
|
|
# OpenAI requires batch size <=16
|
|
batch_size = 16
|
|
texts = [truncate(t, 8191) for t in texts]
|
|
ress = []
|
|
total_tokens = 0
|
|
for i in range(0, len(texts), batch_size):
|
|
res = self.client.embeddings.create(input=texts[i:i + batch_size],
|
|
model=self.model_name)
|
|
try:
|
|
ress.extend([d.embedding for d in res.data])
|
|
total_tokens += self.total_token_count(res)
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
return np.array(ress), total_tokens
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embeddings.create(input=[truncate(text, 8191)],
|
|
model=self.model_name)
|
|
return np.array(res.data[0].embedding), self.total_token_count(res)
|
|
|
|
|
|
class LocalAIEmbed(Base):
|
|
def __init__(self, key, model_name, base_url):
|
|
if not base_url:
|
|
raise ValueError("Local embedding model url cannot be None")
|
|
base_url = urljoin(base_url, "v1")
|
|
self.client = OpenAI(api_key="empty", base_url=base_url)
|
|
self.model_name = model_name.split("___")[0]
|
|
|
|
def encode(self, texts: list):
|
|
batch_size = 16
|
|
ress = []
|
|
for i in range(0, len(texts), batch_size):
|
|
res = self.client.embeddings.create(input=texts[i:i + batch_size], model=self.model_name)
|
|
try:
|
|
ress.extend([d.embedding for d in res.data])
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
# local embedding for LmStudio donot count tokens
|
|
return np.array(ress), 1024
|
|
|
|
def encode_queries(self, text):
|
|
embds, cnt = self.encode([text])
|
|
return np.array(embds[0]), cnt
|
|
|
|
|
|
class AzureEmbed(OpenAIEmbed):
|
|
def __init__(self, key, model_name, **kwargs):
|
|
from openai.lib.azure import AzureOpenAI
|
|
api_key = json.loads(key).get('api_key', '')
|
|
api_version = json.loads(key).get('api_version', '2024-02-01')
|
|
self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
|
|
self.model_name = model_name
|
|
|
|
|
|
class BaiChuanEmbed(OpenAIEmbed):
|
|
def __init__(self, key,
|
|
model_name='Baichuan-Text-Embedding',
|
|
base_url='https://api.baichuan-ai.com/v1'):
|
|
if not base_url:
|
|
base_url = "https://api.baichuan-ai.com/v1"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class QWenEmbed(Base):
|
|
def __init__(self, key, model_name="text_embedding_v2", **kwargs):
|
|
self.key = key
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list):
|
|
import dashscope
|
|
batch_size = 4
|
|
res = []
|
|
token_count = 0
|
|
texts = [truncate(t, 2048) for t in texts]
|
|
for i in range(0, len(texts), batch_size):
|
|
resp = dashscope.TextEmbedding.call(
|
|
model=self.model_name,
|
|
input=texts[i:i + batch_size],
|
|
api_key=self.key,
|
|
text_type="document"
|
|
)
|
|
try:
|
|
embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
|
|
for e in resp["output"]["embeddings"]:
|
|
embds[e["text_index"]] = e["embedding"]
|
|
res.extend(embds)
|
|
token_count += self.total_token_count(resp)
|
|
except Exception as _e:
|
|
log_exception(_e, resp)
|
|
raise
|
|
return np.array(res), token_count
|
|
|
|
def encode_queries(self, text):
|
|
resp = dashscope.TextEmbedding.call(
|
|
model=self.model_name,
|
|
input=text[:2048],
|
|
api_key=self.key,
|
|
text_type="query"
|
|
)
|
|
try:
|
|
return np.array(resp["output"]["embeddings"][0]
|
|
["embedding"]), self.total_token_count(resp)
|
|
except Exception as _e:
|
|
log_exception(_e, resp)
|
|
|
|
|
|
class ZhipuEmbed(Base):
|
|
def __init__(self, key, model_name="embedding-2", **kwargs):
|
|
self.client = ZhipuAI(api_key=key)
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list):
|
|
arr = []
|
|
tks_num = 0
|
|
MAX_LEN = -1
|
|
if self.model_name.lower() == "embedding-2":
|
|
MAX_LEN = 512
|
|
if self.model_name.lower() == "embedding-3":
|
|
MAX_LEN = 3072
|
|
if MAX_LEN > 0:
|
|
texts = [truncate(t, MAX_LEN) for t in texts]
|
|
|
|
for txt in texts:
|
|
res = self.client.embeddings.create(input=txt,
|
|
model=self.model_name)
|
|
try:
|
|
arr.append(res.data[0].embedding)
|
|
tks_num += self.total_token_count(res)
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
return np.array(arr), tks_num
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embeddings.create(input=text,
|
|
model=self.model_name)
|
|
try:
|
|
return np.array(res.data[0].embedding), self.total_token_count(res)
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
|
|
|
|
class OllamaEmbed(Base):
|
|
def __init__(self, key, model_name, **kwargs):
|
|
self.client = Client(host=kwargs["base_url"]) if not key or key == "x" else \
|
|
Client(host=kwargs["base_url"], headers={"Authorization": f"Bear {key}"})
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list):
|
|
arr = []
|
|
tks_num = 0
|
|
for txt in texts:
|
|
res = self.client.embeddings(prompt=txt,
|
|
model=self.model_name,
|
|
options={"use_mmap": True})
|
|
try:
|
|
arr.append(res["embedding"])
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
tks_num += 128
|
|
return np.array(arr), tks_num
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embeddings(prompt=text,
|
|
model=self.model_name,
|
|
options={"use_mmap": True})
|
|
try:
|
|
return np.array(res["embedding"]), 128
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
|
|
|
|
class FastEmbed(DefaultEmbedding):
|
|
|
|
def __init__(
|
|
self,
|
|
key: str | None = None,
|
|
model_name: str = "BAAI/bge-small-en-v1.5",
|
|
cache_dir: str | None = None,
|
|
threads: int | None = None,
|
|
**kwargs,
|
|
):
|
|
if not settings.LIGHTEN:
|
|
with FastEmbed._model_lock:
|
|
from fastembed import TextEmbedding
|
|
if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
|
|
try:
|
|
DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
|
|
DefaultEmbedding._model_name = model_name
|
|
except Exception:
|
|
cache_dir = snapshot_download(repo_id="BAAI/bge-small-en-v1.5",
|
|
local_dir=os.path.join(get_home_cache_dir(),
|
|
re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
|
|
local_dir_use_symlinks=False)
|
|
DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
|
|
self._model = DefaultEmbedding._model
|
|
self._model_name = model_name
|
|
|
|
def encode(self, texts: list):
|
|
# Using the internal tokenizer to encode the texts and get the total
|
|
# number of tokens
|
|
encodings = self._model.model.tokenizer.encode_batch(texts)
|
|
total_tokens = sum(len(e) for e in encodings)
|
|
|
|
embeddings = [e.tolist() for e in self._model.embed(texts, batch_size=16)]
|
|
|
|
return np.array(embeddings), total_tokens
|
|
|
|
def encode_queries(self, text: str):
|
|
# Using the internal tokenizer to encode the texts and get the total
|
|
# number of tokens
|
|
encoding = self._model.model.tokenizer.encode(text)
|
|
embedding = next(self._model.query_embed(text)).tolist()
|
|
|
|
return np.array(embedding), len(encoding.ids)
|
|
|
|
|
|
class XinferenceEmbed(Base):
|
|
def __init__(self, key, model_name="", base_url=""):
|
|
base_url = urljoin(base_url, "v1")
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list):
|
|
batch_size = 16
|
|
ress = []
|
|
total_tokens = 0
|
|
for i in range(0, len(texts), batch_size):
|
|
res = self.client.embeddings.create(input=texts[i:i + batch_size], model=self.model_name)
|
|
try:
|
|
ress.extend([d.embedding for d in res.data])
|
|
total_tokens += self.total_token_count(res)
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
return np.array(ress), total_tokens
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embeddings.create(input=[text],
|
|
model=self.model_name)
|
|
try:
|
|
return np.array(res.data[0].embedding), self.total_token_count(res)
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
|
|
|
|
class YoudaoEmbed(Base):
|
|
_client = None
|
|
|
|
def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
|
|
if not settings.LIGHTEN and not YoudaoEmbed._client:
|
|
from BCEmbedding import EmbeddingModel as qanthing
|
|
try:
|
|
logging.info("LOADING BCE...")
|
|
YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(
|
|
get_home_cache_dir(),
|
|
"bce-embedding-base_v1"))
|
|
except Exception:
|
|
YoudaoEmbed._client = qanthing(
|
|
model_name_or_path=model_name.replace(
|
|
"maidalun1020", "InfiniFlow"))
|
|
|
|
def encode(self, texts: list):
|
|
batch_size = 10
|
|
res = []
|
|
token_count = 0
|
|
for t in texts:
|
|
token_count += num_tokens_from_string(t)
|
|
for i in range(0, len(texts), batch_size):
|
|
embds = YoudaoEmbed._client.encode(texts[i:i + batch_size])
|
|
res.extend(embds)
|
|
return np.array(res), token_count
|
|
|
|
def encode_queries(self, text):
|
|
embds = YoudaoEmbed._client.encode([text])
|
|
return np.array(embds[0]), num_tokens_from_string(text)
|
|
|
|
|
|
class JinaEmbed(Base):
|
|
def __init__(self, key, model_name="jina-embeddings-v3",
|
|
base_url="https://api.jina.ai/v1/embeddings"):
|
|
|
|
self.base_url = "https://api.jina.ai/v1/embeddings"
|
|
self.headers = {
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {key}"
|
|
}
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list):
|
|
texts = [truncate(t, 8196) for t in texts]
|
|
batch_size = 16
|
|
ress = []
|
|
token_count = 0
|
|
for i in range(0, len(texts), batch_size):
|
|
data = {
|
|
"model": self.model_name,
|
|
"input": texts[i:i + batch_size],
|
|
'encoding_type': 'float'
|
|
}
|
|
response = requests.post(self.base_url, headers=self.headers, json=data)
|
|
try:
|
|
res = response.json()
|
|
ress.extend([d["embedding"] for d in res["data"]])
|
|
token_count += self.total_token_count(res)
|
|
except Exception as _e:
|
|
log_exception(_e, response)
|
|
return np.array(ress), token_count
|
|
|
|
def encode_queries(self, text):
|
|
embds, cnt = self.encode([text])
|
|
return np.array(embds[0]), cnt
|
|
|
|
|
|
class InfinityEmbed(Base):
|
|
_model = None
|
|
|
|
def __init__(
|
|
self,
|
|
model_names: list[str] = ("BAAI/bge-small-en-v1.5",),
|
|
engine_kwargs: dict = {},
|
|
key = None,
|
|
):
|
|
|
|
from infinity_emb import EngineArgs
|
|
from infinity_emb.engine import AsyncEngineArray
|
|
|
|
self._default_model = model_names[0]
|
|
self.engine_array = AsyncEngineArray.from_args([EngineArgs(model_name_or_path = model_name, **engine_kwargs) for model_name in model_names])
|
|
|
|
async def _embed(self, sentences: list[str], model_name: str = ""):
|
|
if not model_name:
|
|
model_name = self._default_model
|
|
engine = self.engine_array[model_name]
|
|
was_already_running = engine.is_running
|
|
if not was_already_running:
|
|
await engine.astart()
|
|
embeddings, usage = await engine.embed(sentences=sentences)
|
|
if not was_already_running:
|
|
await engine.astop()
|
|
return embeddings, usage
|
|
|
|
def encode(self, texts: list[str], model_name: str = "") -> tuple[np.ndarray, int]:
|
|
# Using the internal tokenizer to encode the texts and get the total
|
|
# number of tokens
|
|
embeddings, usage = asyncio.run(self._embed(texts, model_name))
|
|
return np.array(embeddings), usage
|
|
|
|
def encode_queries(self, text: str) -> tuple[np.ndarray, int]:
|
|
# Using the internal tokenizer to encode the texts and get the total
|
|
# number of tokens
|
|
return self.encode([text])
|
|
|
|
|
|
class MistralEmbed(Base):
|
|
def __init__(self, key, model_name="mistral-embed",
|
|
base_url=None):
|
|
from mistralai.client import MistralClient
|
|
self.client = MistralClient(api_key=key)
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list):
|
|
texts = [truncate(t, 8196) for t in texts]
|
|
batch_size = 16
|
|
ress = []
|
|
token_count = 0
|
|
for i in range(0, len(texts), batch_size):
|
|
res = self.client.embeddings(input=texts[i:i + batch_size],
|
|
model=self.model_name)
|
|
try:
|
|
ress.extend([d.embedding for d in res.data])
|
|
token_count += self.total_token_count(res)
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
return np.array(ress), token_count
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embeddings(input=[truncate(text, 8196)],
|
|
model=self.model_name)
|
|
try:
|
|
return np.array(res.data[0].embedding), self.total_token_count(res)
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
|
|
|
|
class BedrockEmbed(Base):
|
|
def __init__(self, key, model_name,
|
|
**kwargs):
|
|
import boto3
|
|
self.bedrock_ak = json.loads(key).get('bedrock_ak', '')
|
|
self.bedrock_sk = json.loads(key).get('bedrock_sk', '')
|
|
self.bedrock_region = json.loads(key).get('bedrock_region', '')
|
|
self.model_name = model_name
|
|
|
|
if self.bedrock_ak == '' or self.bedrock_sk == '' or self.bedrock_region == '':
|
|
# Try to create a client using the default credentials (AWS_PROFILE, AWS_DEFAULT_REGION, etc.)
|
|
self.client = boto3.client('bedrock-runtime')
|
|
else:
|
|
self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
|
|
aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
|
|
|
|
def encode(self, texts: list):
|
|
texts = [truncate(t, 8196) for t in texts]
|
|
embeddings = []
|
|
token_count = 0
|
|
for text in texts:
|
|
if self.model_name.split('.')[0] == 'amazon':
|
|
body = {"inputText": text}
|
|
elif self.model_name.split('.')[0] == 'cohere':
|
|
body = {"texts": [text], "input_type": 'search_document'}
|
|
|
|
response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
|
|
try:
|
|
model_response = json.loads(response["body"].read())
|
|
embeddings.extend([model_response["embedding"]])
|
|
token_count += num_tokens_from_string(text)
|
|
except Exception as _e:
|
|
log_exception(_e, response)
|
|
|
|
return np.array(embeddings), token_count
|
|
|
|
def encode_queries(self, text):
|
|
embeddings = []
|
|
token_count = num_tokens_from_string(text)
|
|
if self.model_name.split('.')[0] == 'amazon':
|
|
body = {"inputText": truncate(text, 8196)}
|
|
elif self.model_name.split('.')[0] == 'cohere':
|
|
body = {"texts": [truncate(text, 8196)], "input_type": 'search_query'}
|
|
|
|
response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
|
|
try:
|
|
model_response = json.loads(response["body"].read())
|
|
embeddings.extend(model_response["embedding"])
|
|
except Exception as _e:
|
|
log_exception(_e, response)
|
|
|
|
return np.array(embeddings), token_count
|
|
|
|
|
|
class GeminiEmbed(Base):
|
|
def __init__(self, key, model_name='models/text-embedding-004',
|
|
**kwargs):
|
|
self.key = key
|
|
self.model_name = 'models/' + model_name
|
|
|
|
def encode(self, texts: list):
|
|
texts = [truncate(t, 2048) for t in texts]
|
|
token_count = sum(num_tokens_from_string(text) for text in texts)
|
|
genai.configure(api_key=self.key)
|
|
batch_size = 16
|
|
ress = []
|
|
for i in range(0, len(texts), batch_size):
|
|
result = genai.embed_content(
|
|
model=self.model_name,
|
|
content=texts[i: i + batch_size],
|
|
task_type="retrieval_document",
|
|
title="Embedding of single string")
|
|
try:
|
|
ress.extend(result['embedding'])
|
|
except Exception as _e:
|
|
log_exception(_e, result)
|
|
return np.array(ress),token_count
|
|
|
|
def encode_queries(self, text):
|
|
genai.configure(api_key=self.key)
|
|
result = genai.embed_content(
|
|
model=self.model_name,
|
|
content=truncate(text,2048),
|
|
task_type="retrieval_document",
|
|
title="Embedding of single string")
|
|
token_count = num_tokens_from_string(text)
|
|
try:
|
|
return np.array(result['embedding']), token_count
|
|
except Exception as _e:
|
|
log_exception(_e, result)
|
|
|
|
|
|
class NvidiaEmbed(Base):
|
|
def __init__(
|
|
self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings"
|
|
):
|
|
if not base_url:
|
|
base_url = "https://integrate.api.nvidia.com/v1/embeddings"
|
|
self.api_key = key
|
|
self.base_url = base_url
|
|
self.headers = {
|
|
"accept": "application/json",
|
|
"Content-Type": "application/json",
|
|
"authorization": f"Bearer {self.api_key}",
|
|
}
|
|
self.model_name = model_name
|
|
if model_name == "nvidia/embed-qa-4":
|
|
self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings"
|
|
self.model_name = "NV-Embed-QA"
|
|
if model_name == "snowflake/arctic-embed-l":
|
|
self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings"
|
|
|
|
def encode(self, texts: list):
|
|
batch_size = 16
|
|
ress = []
|
|
token_count = 0
|
|
for i in range(0, len(texts), batch_size):
|
|
payload = {
|
|
"input": texts[i : i + batch_size],
|
|
"input_type": "query",
|
|
"model": self.model_name,
|
|
"encoding_format": "float",
|
|
"truncate": "END",
|
|
}
|
|
response = requests.post(self.base_url, headers=self.headers, json=payload)
|
|
try:
|
|
res = response.json()
|
|
except Exception as _e:
|
|
log_exception(_e, response)
|
|
ress.extend([d["embedding"] for d in res["data"]])
|
|
token_count += self.total_token_count(res)
|
|
return np.array(ress), token_count
|
|
|
|
def encode_queries(self, text):
|
|
embds, cnt = self.encode([text])
|
|
return np.array(embds[0]), cnt
|
|
|
|
|
|
class LmStudioEmbed(LocalAIEmbed):
|
|
def __init__(self, key, model_name, base_url):
|
|
if not base_url:
|
|
raise ValueError("Local llm url cannot be None")
|
|
base_url = urljoin(base_url, "v1")
|
|
self.client = OpenAI(api_key="lm-studio", base_url=base_url)
|
|
self.model_name = model_name
|
|
|
|
|
|
class OpenAI_APIEmbed(OpenAIEmbed):
|
|
def __init__(self, key, model_name, base_url):
|
|
if not base_url:
|
|
raise ValueError("url cannot be None")
|
|
base_url = urljoin(base_url, "v1")
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name.split("___")[0]
|
|
|
|
|
|
class CoHereEmbed(Base):
|
|
def __init__(self, key, model_name, base_url=None):
|
|
from cohere import Client
|
|
|
|
self.client = Client(api_key=key)
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list):
|
|
batch_size = 16
|
|
ress = []
|
|
token_count = 0
|
|
for i in range(0, len(texts), batch_size):
|
|
res = self.client.embed(
|
|
texts=texts[i : i + batch_size],
|
|
model=self.model_name,
|
|
input_type="search_document",
|
|
embedding_types=["float"],
|
|
)
|
|
try:
|
|
ress.extend([d for d in res.embeddings.float])
|
|
token_count += res.meta.billed_units.input_tokens
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
return np.array(ress), token_count
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embed(
|
|
texts=[text],
|
|
model=self.model_name,
|
|
input_type="search_query",
|
|
embedding_types=["float"],
|
|
)
|
|
try:
|
|
return np.array(res.embeddings.float[0]), int(res.meta.billed_units.input_tokens)
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
|
|
|
|
class TogetherAIEmbed(OpenAIEmbed):
|
|
def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
|
|
if not base_url:
|
|
base_url = "https://api.together.xyz/v1"
|
|
super().__init__(key, model_name, base_url=base_url)
|
|
|
|
|
|
class PerfXCloudEmbed(OpenAIEmbed):
|
|
def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
|
|
if not base_url:
|
|
base_url = "https://cloud.perfxlab.cn/v1"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class UpstageEmbed(OpenAIEmbed):
|
|
def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
|
|
if not base_url:
|
|
base_url = "https://api.upstage.ai/v1/solar"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class SILICONFLOWEmbed(Base):
|
|
def __init__(
|
|
self, key, model_name, base_url="https://api.siliconflow.cn/v1/embeddings"
|
|
):
|
|
if not base_url:
|
|
base_url = "https://api.siliconflow.cn/v1/embeddings"
|
|
self.headers = {
|
|
"accept": "application/json",
|
|
"content-type": "application/json",
|
|
"authorization": f"Bearer {key}",
|
|
}
|
|
self.base_url = base_url
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list):
|
|
batch_size = 16
|
|
ress = []
|
|
token_count = 0
|
|
for i in range(0, len(texts), batch_size):
|
|
texts_batch = texts[i : i + batch_size]
|
|
payload = {
|
|
"model": self.model_name,
|
|
"input": texts_batch,
|
|
"encoding_format": "float",
|
|
}
|
|
response = requests.post(self.base_url, json=payload, headers=self.headers)
|
|
try:
|
|
res = response.json()
|
|
ress.extend([d["embedding"] for d in res["data"]])
|
|
token_count += self.total_token_count(res)
|
|
except Exception as _e:
|
|
log_exception(_e, response)
|
|
|
|
return np.array(ress), token_count
|
|
|
|
def encode_queries(self, text):
|
|
payload = {
|
|
"model": self.model_name,
|
|
"input": text,
|
|
"encoding_format": "float",
|
|
}
|
|
response = requests.post(self.base_url, json=payload, headers=self.headers)
|
|
try:
|
|
res = response.json()
|
|
return np.array(res["data"][0]["embedding"]), self.total_token_count(res)
|
|
except Exception as _e:
|
|
log_exception(_e, response)
|
|
|
|
|
|
class ReplicateEmbed(Base):
|
|
def __init__(self, key, model_name, base_url=None):
|
|
from replicate.client import Client
|
|
|
|
self.model_name = model_name
|
|
self.client = Client(api_token=key)
|
|
|
|
def encode(self, texts: list):
|
|
batch_size = 16
|
|
token_count = sum([num_tokens_from_string(text) for text in texts])
|
|
ress = []
|
|
for i in range(0, len(texts), batch_size):
|
|
res = self.client.run(self.model_name, input={"texts": texts[i : i + batch_size]})
|
|
ress.extend(res)
|
|
return np.array(ress), token_count
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embed(self.model_name, input={"texts": [text]})
|
|
return np.array(res), num_tokens_from_string(text)
|
|
|
|
|
|
class BaiduYiyanEmbed(Base):
|
|
def __init__(self, key, model_name, base_url=None):
|
|
import qianfan
|
|
|
|
key = json.loads(key)
|
|
ak = key.get("yiyan_ak", "")
|
|
sk = key.get("yiyan_sk", "")
|
|
self.client = qianfan.Embedding(ak=ak, sk=sk)
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list, batch_size=16):
|
|
res = self.client.do(model=self.model_name, texts=texts).body
|
|
try:
|
|
return (
|
|
np.array([r["embedding"] for r in res["data"]]),
|
|
self.total_token_count(res),
|
|
)
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.do(model=self.model_name, texts=[text]).body
|
|
try:
|
|
return (
|
|
np.array([r["embedding"] for r in res["data"]]),
|
|
self.total_token_count(res),
|
|
)
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
|
|
|
|
class VoyageEmbed(Base):
|
|
def __init__(self, key, model_name, base_url=None):
|
|
import voyageai
|
|
|
|
self.client = voyageai.Client(api_key=key)
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list):
|
|
batch_size = 16
|
|
ress = []
|
|
token_count = 0
|
|
for i in range(0, len(texts), batch_size):
|
|
res = self.client.embed(
|
|
texts=texts[i : i + batch_size], model=self.model_name, input_type="document"
|
|
)
|
|
try:
|
|
ress.extend(res.embeddings)
|
|
token_count += res.total_tokens
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
return np.array(ress), token_count
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embed(
|
|
texts=text, model=self.model_name, input_type="query"
|
|
)
|
|
try:
|
|
return np.array(res.embeddings)[0], res.total_tokens
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
|
|
|
|
class HuggingFaceEmbed(Base):
|
|
def __init__(self, key, model_name, base_url=None):
|
|
if not model_name:
|
|
raise ValueError("Model name cannot be None")
|
|
self.key = key
|
|
self.model_name = model_name.split("___")[0]
|
|
self.base_url = base_url or "http://127.0.0.1:8080"
|
|
|
|
def encode(self, texts: list):
|
|
embeddings = []
|
|
for text in texts:
|
|
response = requests.post(
|
|
f"{self.base_url}/embed",
|
|
json={"inputs": text},
|
|
headers={'Content-Type': 'application/json'}
|
|
)
|
|
if response.status_code == 200:
|
|
embedding = response.json()
|
|
embeddings.append(embedding[0])
|
|
else:
|
|
raise Exception(f"Error: {response.status_code} - {response.text}")
|
|
return np.array(embeddings), sum([num_tokens_from_string(text) for text in texts])
|
|
|
|
def encode_queries(self, text):
|
|
response = requests.post(
|
|
f"{self.base_url}/embed",
|
|
json={"inputs": text},
|
|
headers={'Content-Type': 'application/json'}
|
|
)
|
|
if response.status_code == 200:
|
|
embedding = response.json()
|
|
return np.array(embedding[0]), num_tokens_from_string(text)
|
|
else:
|
|
raise Exception(f"Error: {response.status_code} - {response.text}")
|
|
|
|
|
|
class VolcEngineEmbed(OpenAIEmbed):
|
|
def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3"):
|
|
if not base_url:
|
|
base_url = "https://ark.cn-beijing.volces.com/api/v3"
|
|
ark_api_key = json.loads(key).get('ark_api_key', '')
|
|
model_name = json.loads(key).get('ep_id', '') + json.loads(key).get('endpoint_id', '')
|
|
super().__init__(ark_api_key,model_name,base_url)
|
|
|
|
|
|
class GPUStackEmbed(OpenAIEmbed):
|
|
def __init__(self, key, model_name, base_url):
|
|
if not base_url:
|
|
raise ValueError("url cannot be None")
|
|
base_url = urljoin(base_url, "v1")
|
|
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name
|
|
|
|
|
|
class NovitaEmbed(SILICONFLOWEmbed):
|
|
def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai/embeddings"):
|
|
super().__init__(key, model_name, base_url) |