42 KiB
| sidebar_position | slug |
|---|---|
| 2 | /python_api_reference |
Python API Reference
A complete reference for RAGFlow's Python APIs. Before proceeding, please ensure you have your RAGFlow API key ready for authentication.
:::tip API GROUPING Dataset Management :::
Create dataset
RAGFlow.create_dataset(
name: str,
avatar: str = "",
description: str = "",
embedding_model: str = "BAAI/bge-zh-v1.5",
language: str = "English",
permission: str = "me",
chunk_method: str = "naive",
parser_config: DataSet.ParserConfig = None
) -> DataSet
Creates a dataset.
Parameters
name: str, Required
The unique name of the dataset to create. It must adhere to the following requirements:
- Permitted characters include:
- English letters (a-z, A-Z)
- Digits (0-9)
- "_" (underscore)
- Must begin with an English letter or underscore.
- Maximum 65,535 characters.
- Case-insensitive.
avatar: str
Base64 encoding of the avatar. Defaults to ""
description: str
A brief description of the dataset to create. Defaults to "".
language: str
The language setting of the dataset to create. Available options:
"English"(default)"Chinese"
permission
Specifies who can access the dataset to create. Available options:
"me": (Default) Only you can manage the dataset."team": All team members can manage the dataset.
chunk_method, str
The chunking method of the dataset to create. Available options:
"naive": General (default)"manual: Manual"qa": Q&A"table": Table"paper": Paper"book": Book"laws": Laws"presentation": Presentation"picture": Picture"one": One"knowledge_graph": Knowledge Graph
Ensure your LLM is properly configured on the Settings page before selecting this. Please also note that Knowledge Graph consumes a large number of Tokens!"email": Email
parser_config
The parser configuration of the dataset. A ParserConfig object's attributes vary based on the selected chunk_method:
chunk_method="naive":
{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","html4excel":False,"layout_recognize":True,"raptor":{"user_raptor":False}}.chunk_method="qa":
{"raptor": {"user_raptor": False}}chunk_method="manuel":
{"raptor": {"user_raptor": False}}chunk_method="table":
Nonechunk_method="paper":
{"raptor": {"user_raptor": False}}chunk_method="book":
{"raptor": {"user_raptor": False}}chunk_method="laws":
{"raptor": {"user_raptor": False}}chunk_method="picture":
Nonechunk_method="presentation":
{"raptor": {"user_raptor": False}}chunk_method="one":
Nonechunk_method="knowledge-graph":
{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","entity_types":["organization","person","location","event","time"]}chunk_method="email":
None
Returns
- Success: A
datasetobject. - Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="kb_1")
Delete datasets
RAGFlow.delete_datasets(ids: list[str] = None)
Deletes datasets by ID.
Parameters
ids: list[str], Required
The IDs of the datasets to delete. Defaults to None. If it is not specified, all datasets will be deleted.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
rag_object.delete_datasets(ids=["id_1","id_2"])
List datasets
RAGFlow.list_datasets(
page: int = 1,
page_size: int = 30,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> list[DataSet]
Lists datasets.
Parameters
page: int
Specifies the page on which the datasets will be displayed. Defaults to 1.
page_size: int
The number of datasets on each page. Defaults to 30.
orderby: str
The field by which datasets should be sorted. Available options:
"create_time"(default)"update_time"
desc: bool
Indicates whether the retrieved datasets should be sorted in descending order. Defaults to True.
id: str
The ID of the dataset to retrieve. Defaults to None.
name: str
The name of the dataset to retrieve. Defaults to None.
Returns
- Success: A list of
DataSetobjects. - Failure:
Exception.
Examples
List all datasets
for dataset in rag_object.list_datasets():
print(dataset)
Retrieve a dataset by ID
dataset = rag_object.list_datasets(id = "id_1")
print(dataset[0])
Update dataset
DataSet.update(update_message: dict)
Updates configurations for the current dataset.
Parameters
update_message: dict[str, str|int], Required
A dictionary representing the attributes to update, with the following keys:
"name":strThe revised name of the dataset."embedding_model":strThe updated embedding model name.- Ensure that
"chunk_count"is0before updating"embedding_model".
- Ensure that
"chunk_method":strThe chunking method for the dataset. Available options:"naive": General"manual: Manual"qa": Q&A"table": Table"paper": Paper"book": Book"laws": Laws"presentation": Presentation"picture": Picture"one": One"email": Email"knowledge_graph": Knowledge Graph
Ensure your LLM is properly configured on the Settings page before selecting this. Please also note that Knowledge Graph consumes a large number of Tokens!
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(name="kb_name")
dataset.update({"embedding_model":"BAAI/bge-zh-v1.5", "chunk_method":"manual"})
:::tip API GROUPING File Management within Dataset :::
Upload documents
DataSet.upload_documents(document_list: list[dict])
Uploads documents to the current dataset.
Parameters
document_list: list[dict], Required
A list of dictionaries representing the documents to upload, each containing the following keys:
"display_name": (Optional) The file name to display in the dataset."blob": (Optional) The binary content of the file to upload.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
dataset = rag_object.create_dataset(name="kb_name")
dataset.upload_documents([{"display_name": "1.txt", "blob": "<BINARY_CONTENT_OF_THE_DOC>"}, {"display_name": "2.pdf", "blob": "<BINARY_CONTENT_OF_THE_DOC>"}])
Update document
Document.update(update_message:dict)
Updates configurations for the current document.
Parameters
update_message: dict[str, str|dict[]], Required
A dictionary representing the attributes to update, with the following keys:
"display_name":strThe name of the document to update."chunk_method":strThe parsing method to apply to the document."naive": General"manual: Manual"qa": Q&A"table": Table"paper": Paper"book": Book"laws": Laws"presentation": Presentation"picture": Picture"one": One"knowledge_graph": Knowledge Graph
Ensure your LLM is properly configured on the Settings page before selecting this. Please also note that Knowledge Graph consumes a large number of Tokens!"email": Email
"parser_config":dict[str, Any]The parsing configuration for the document. Its attributes vary based on the selected"chunk_method":"chunk_method"="naive":
{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","html4excel":False,"layout_recognize":True,"raptor":{"user_raptor":False}}.chunk_method="qa":
{"raptor": {"user_raptor": False}}chunk_method="manuel":
{"raptor": {"user_raptor": False}}chunk_method="table":
Nonechunk_method="paper":
{"raptor": {"user_raptor": False}}chunk_method="book":
{"raptor": {"user_raptor": False}}chunk_method="laws":
{"raptor": {"user_raptor": False}}chunk_method="presentation":
{"raptor": {"user_raptor": False}}chunk_method="picture":
Nonechunk_method="one":
Nonechunk_method="knowledge-graph":
{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","entity_types":["organization","person","location","event","time"]}chunk_method="email":
None
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id='id')
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
doc.update([{"parser_config": {"chunk_token_count": 256}}, {"chunk_method": "manual"}])
Download document
Document.download() -> bytes
Downloads the current document.
Returns
The downloaded document in bytes.
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="id")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
open("~/ragflow.txt", "wb+").write(doc.download())
print(doc)
List documents
Dataset.list_documents(id:str =None, keywords: str=None, page: int=1, page_size:int = 30, order_by:str = "create_time", desc: bool = True) -> list[Document]
Lists documents in the current dataset.
Parameters
id: str
The ID of the document to retrieve. Defaults to None.
keywords: str
The keywords used to match document titles. Defaults to None.
page: int
Specifies the page on which the documents will be displayed. Defaults to 1.
page_size: int
The maximum number of documents on each page. Defaults to 30.
orderby: str
The field by which documents should be sorted. Available options:
"create_time"(default)"update_time"
desc: bool
Indicates whether the retrieved documents should be sorted in descending order. Defaults to True.
Returns
- Success: A list of
Documentobjects. - Failure:
Exception.
A Document object contains the following attributes:
id: The document ID. Defaults to"".name: The document name. Defaults to"".thumbnail: The thumbnail image of the document. Defaults toNone.dataset_id: The dataset ID associated with the document. Defaults toNone.chunk_methodThe chunk method name. Defaults to"naive".source_type: The source type of the document. Defaults to"local".type: Type or category of the document. Defaults to"". Reserved for future use.created_by:strThe creator of the document. Defaults to"".size:intThe document size in bytes. Defaults to0.token_count:intThe number of tokens in the document. Defaults to0.chunk_count:intThe number of chunks in the document. Defaults to0.progress:floatThe current processing progress as a percentage. Defaults to0.0.progress_msg:strA message indicating the current progress status. Defaults to"".process_begin_at:datetimeThe start time of document processing. Defaults toNone.process_duation:floatDuration of the processing in seconds. Defaults to0.0.run:strThe document's processing status:"UNSTART"(default)"RUNNING""CANCEL""DONE""FAIL"
status:strReserved for future use.parser_config:ParserConfigConfiguration object for the parser. Its attributes vary based on the selectedchunk_method:chunk_method="naive":
{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","html4excel":False,"layout_recognize":True,"raptor":{"user_raptor":False}}.chunk_method="qa":
{"raptor": {"user_raptor": False}}chunk_method="manuel":
{"raptor": {"user_raptor": False}}chunk_method="table":
Nonechunk_method="paper":
{"raptor": {"user_raptor": False}}chunk_method="book":
{"raptor": {"user_raptor": False}}chunk_method="laws":
{"raptor": {"user_raptor": False}}chunk_method="presentation":
{"raptor": {"user_raptor": False}}chunk_method="picure":
Nonechunk_method="one":
Nonechunk_method="knowledge-graph":
{"chunk_token_num":128,"delimiter": "\\n!?;。;!?","entity_types":["organization","person","location","event","time"]}chunk_method="email":
None
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="kb_1")
filename1 = "~/ragflow.txt"
blob = open(filename1 , "rb").read()
dataset.upload_documents([{"name":filename1,"blob":blob}])
for doc in dataset.list_documents(keywords="rag", page=0, page_size=12):
print(doc)
Delete documents
DataSet.delete_documents(ids: list[str] = None)
Deletes documents by ID.
Parameters
ids: list[list]
The IDs of the documents to delete. Defaults to None. If it is not specified, all documents in the dataset will be deleted.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(name="kb_1")
dataset = dataset[0]
dataset.delete_documents(ids=["id_1","id_2"])
Parse documents
DataSet.async_parse_documents(document_ids:list[str]) -> None
Parses documents in the current dataset.
Parameters
document_ids: list[str], Required
The IDs of the documents to parse.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="dataset_name")
documents = [
{'display_name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
{'display_name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
{'display_name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
]
dataset.upload_documents(documents)
documents = dataset.list_documents(keywords="test")
ids = []
for document in documents:
ids.append(document.id)
dataset.async_parse_documents(ids)
print("Async bulk parsing initiated.")
Stop parsing documents
DataSet.async_cancel_parse_documents(document_ids:list[str])-> None
Stops parsing specified documents.
Parameters
document_ids: list[str], Required
The IDs of the documents for which parsing should be stopped.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="dataset_name")
documents = [
{'display_name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
{'display_name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
{'display_name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
]
dataset.upload_documents(documents)
documents = dataset.list_documents(keywords="test")
ids = []
for document in documents:
ids.append(document.id)
dataset.async_parse_documents(ids)
print("Async bulk parsing initiated.")
dataset.async_cancel_parse_documents(ids)
print("Async bulk parsing cancelled.")
Add chunk
Document.add_chunk(content:str, important_keywords:list[str] = []) -> Chunk
Adds a chunk to the current document.
Parameters
content: str, Required
The text content of the chunk.
important_keywords: list[str]
The key terms or phrases to tag with the chunk.
Returns
- Success: A
Chunkobject. - Failure:
Exception.
A Chunk object contains the following attributes:
id:str: The chunk ID.content:strThe text content of the chunk.important_keywords:list[str]A list of key terms or phrases tagged with the chunk.create_time:strThe time when the chunk was created (added to the document).create_timestamp:floatThe timestamp representing the creation time of the chunk, expressed in seconds since January 1, 1970.dataset_id:strThe ID of the associated dataset.document_name:strThe name of the associated document.document_id:strThe ID of the associated document.available:boolThe chunk's availability status in the dataset. Value options:False: UnavailableTrue: Available (default)
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="123")
dtaset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
List chunks
Document.list_chunks(keywords: str = None, page: int = 1, page_size: int = 30, id : str = None) -> list[Chunk]
Lists chunks in the current document.
Parameters
keywords: str
The keywords used to match chunk content. Defaults to None
page: int
Specifies the page on which the chunks will be displayed. Defaults to 1.
page_size: int
The maximum number of chunks on each page. Defaults to 30.
id: str
The ID of the chunk to retrieve. Default: None
Returns
- Success: A list of
Chunkobjects. - Failure:
Exception.
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets("123")
dataset = dataset[0]
dataset.async_parse_documents(["wdfxb5t547d"])
for chunk in doc.list_chunks(keywords="rag", page=0, page_size=12):
print(chunk)
Delete chunks
Document.delete_chunks(chunk_ids: list[str])
Deletes chunks by ID.
Parameters
chunk_ids: list[str]
The IDs of the chunks to delete. Defaults to None. If it is not specified, all chunks of the current document will be deleted.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="123")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
doc.delete_chunks(["id_1","id_2"])
Update chunk
Chunk.update(update_message: dict)
Updates content or configurations for the current chunk.
Parameters
update_message: dict[str, str|list[str]|int] Required
A dictionary representing the attributes to update, with the following keys:
"content":strThe text content of the chunk."important_keywords":list[str]A list of key terms or phrases to tag with the chunk."available":boolThe chunk's availability status in the dataset. Value options:False: UnavailableTrue: Available (default)
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="123")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
chunk.update({"content":"sdfx..."})
Retrieve chunks
RAGFlow.retrieve(question:str="", dataset_ids:list[str]=None, document_ids=list[str]=None, page:int=1, page_size:int=30, similarity_threshold:float=0.2, vector_similarity_weight:float=0.3, top_k:int=1024,rerank_id:str=None,keyword:bool=False,higlight:bool=False) -> list[Chunk]
Retrieves chunks from specified datasets.
Parameters
question: str, Required
The user query or query keywords. Defaults to "".
dataset_ids: list[str], Required
The IDs of the datasets to search. Defaults to None. If you do not set this argument, ensure that you set document_ids.
document_ids: list[str]
The IDs of the documents to search. Defaults to None. You must ensure all selected documents use the same embedding model. Otherwise, an error will occur. If you do not set this argument, ensure that you set dataset_ids.
page: int
The starting index for the documents to retrieve. Defaults to 1.
page_size: int
The maximum number of chunks to retrieve. Defaults to 30.
Similarity_threshold: float
The minimum similarity score. Defaults to 0.2.
vector_similarity_weight: float
The weight of vector cosine similarity. Defaults to 0.3. If x represents the vector cosine similarity, then (1 - x) is the term similarity weight.
top_k: int
The number of chunks engaged in vector cosine computaton. Defaults to 1024.
rerank_id: str
The ID of the rerank model. Defaults to None.
keyword: bool
Indicates whether to enable keyword-based matching:
True: Enable keyword-based matching.False: Disable keyword-based matching (default).
highlight: bool
Specifies whether to enable highlighting of matched terms in the results:
True: Enable highlighting of matched terms.False: Disable highlighting of matched terms (default).
Returns
- Success: A list of
Chunkobjects representing the document chunks. - Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(name="ragflow")
dataset = dataset[0]
name = 'ragflow_test.txt'
path = './test_data/ragflow_test.txt'
rag_object.create_document(dataset, name=name, blob=open(path, "rb").read())
doc = dataset.list_documents(name=name)
doc = doc[0]
dataset.async_parse_documents([doc.id])
for c in rag_object.retrieve(question="What's ragflow?",
dataset_ids=[dataset.id], document_ids=[doc.id],
page=1, page_size=30, similarity_threshold=0.2,
vector_similarity_weight=0.3,
top_k=1024
):
print(c)
:::tip API GROUPING Chat Assistant Management :::
Create chat assistant
RAGFlow.create_chat(
name: str,
avatar: str = "",
dataset_ids: list[str] = [],
llm: Chat.LLM = None,
prompt: Chat.Prompt = None
) -> Chat
Creates a chat assistant.
Parameters
name: str, Required
The name of the chat assistant.
avatar: str
Base64 encoding of the avatar. Defaults to "".
dataset_ids: list[str]
The IDs of the associated datasets. Defaults to [""].
llm: Chat.LLM
The LLM settings for the chat assistant to create. Defaults to None. When the value is None, a dictionary with the following values will be generated as the default. An LLM object contains the following attributes:
model_name:str
The chat model name. If it isNone, the user's default chat model will be used.temperature:float
Controls the randomness of the model's predictions. A lower temperature increases the model's confidence in its responses; a higher temperature increases creativity and diversity. Defaults to0.1.top_p:float
Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from. It focuses on the most likely words, cutting off the less probable ones. Defaults to0.3presence_penalty:float
This discourages the model from repeating the same information by penalizing words that have already appeared in the conversation. Defaults to0.2.frequency penalty:float
Similar to the presence penalty, this reduces the model’s tendency to repeat the same words frequently. Defaults to0.7.max_token:int
The maximum length of the model’s output, measured in the number of tokens (words or pieces of words). Defaults to512.
prompt: Chat.Prompt
Instructions for the LLM to follow. A Prompt object contains the following attributes:
similarity_threshold:floatRAGFlow employs either a combination of weighted keyword similarity and weighted vector cosine similarity, or a combination of weighted keyword similarity and weighted reranking score during retrieval. If a similarity score falls below this threshold, the corresponding chunk will be excluded from the results. The default value is0.2.keywords_similarity_weight:floatThis argument sets the weight of keyword similarity in the hybrid similarity score with vector cosine similarity or reranking model similarity. By adjusting this weight, you can control the influence of keyword similarity in relation to other similarity measures. The default value is0.7.top_n:intThis argument specifies the number of top chunks with similarity scores above thesimilarity_thresholdthat are fed to the LLM. The LLM will only access these 'top N' chunks. The default value is8.variables:list[dict[]]This argument lists the variables to use in the 'System' field of Chat Configurations. Note that:knowledgeis a reserved variable, which represents the retrieved chunks.- All the variables in 'System' should be curly bracketed.
- The default value is
[{"key": "knowledge", "optional": True}].
rerank_model:strIf it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to"".empty_response:strIf nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is found, leave this blank. Defaults toNone.opener:strThe opening greeting for the user. Defaults to"Hi! I am your assistant, can I help you?".show_quote:boolIndicates whether the source of text should be displayed. Defaults toTrue.prompt:strThe prompt content.
Returns
- Success: A
Chatobject representing the chat assistant. - Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
datasets = rag_object.list_datasets(name="kb_1")
dataset_ids = []
for dataset in datasets:
dataset_ids.append(dataset.id)
assistant = rag_object.create_chat("Miss R", dataset_ids=dataset_ids)
Update chat assistant
Chat.update(update_message: dict)
Updates configurations for the current chat assistant.
Parameters
update_message: dict[str, str|list[str]|dict[]], Required
A dictionary representing the attributes to update, with the following keys:
"name":strThe revised name of the chat assistant."avatar":strBase64 encoding of the avatar. Defaults to"""dataset_ids":list[str]The datasets to update."llm":dictThe LLM settings:"model_name",strThe chat model name."temperature",floatControls the randomness of the model's predictions."top_p",floatAlso known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from."presence_penalty",floatThis discourages the model from repeating the same information by penalizing words that have appeared in the conversation."frequency penalty",floatSimilar to presence penalty, this reduces the model’s tendency to repeat the same words."max_token",intThe maximum length of the model’s output, measured in the number of tokens (words or pieces of words).
"prompt": Instructions for the LLM to follow."similarity_threshold":floatRAGFlow employs either a combination of weighted keyword similarity and weighted vector cosine similarity, or a combination of weighted keyword similarity and weighted rerank score during retrieval. This argument sets the threshold for similarities between the user query and chunks. If a similarity score falls below this threshold, the corresponding chunk will be excluded from the results. The default value is0.2."keywords_similarity_weight":floatThis argument sets the weight of keyword similarity in the hybrid similarity score with vector cosine similarity or reranking model similarity. By adjusting this weight, you can control the influence of keyword similarity in relation to other similarity measures. The default value is0.7."top_n":intThis argument specifies the number of top chunks with similarity scores above thesimilarity_thresholdthat are fed to the LLM. The LLM will only access these 'top N' chunks. The default value is8."variables":list[dict[]]This argument lists the variables to use in the 'System' field of Chat Configurations. Note that:knowledgeis a reserved variable, which represents the retrieved chunks.- All the variables in 'System' should be curly bracketed.
- The default value is
[{"key": "knowledge", "optional": True}].
"rerank_model":strIf it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to""."empty_response":strIf nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is retrieved, leave this blank. Defaults toNone."opener":strThe opening greeting for the user. Defaults to"Hi! I am your assistant, can I help you?"."show_quote:boolIndicates whether the source of text should be displayed Defaults toTrue."prompt":strThe prompt content.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
datasets = rag_object.list_datasets(name="kb_1")
dataset_id = datasets[0].id
assistant = rag_object.create_chat("Miss R", dataset_ids=[dataset_id])
assistant.update({"name": "Stefan", "llm": {"temperature": 0.8}, "prompt": {"top_n": 8}})
Delete chat assistants
RAGFlow.delete_chats(ids: list[str] = None)
Deletes chat assistants by ID.
Parameters
ids: list[str]
The IDs of the chat assistants to delete. Defaults to None. If it is empty or not specified, all chat assistants in the system will be deleted.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
rag_object.delete_chats(ids=["id_1","id_2"])
List chat assistants
RAGFlow.list_chats(
page: int = 1,
page_size: int = 30,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> list[Chat]
Lists chat assistants.
Parameters
page: int
Specifies the page on which the chat assistants will be displayed. Defaults to 1.
page_size: int
The number of chat assistants on each page. Defaults to 30.
orderby: str
The attribute by which the results are sorted. Available options:
"create_time"(default)"update_time"
desc: bool
Indicates whether the retrieved chat assistants should be sorted in descending order. Defaults to True.
id: str
The ID of the chat assistant to retrieve. Defaults to None.
name: str
The name of the chat assistant to retrieve. Defaults to None.
Returns
- Success: A list of
Chatobjects. - Failure:
Exception.
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
for assistant in rag_object.list_chats():
print(assistant)
:::tip API GROUPING Chat Session APIs :::
Create session with chat assistant
Chat.create_session(name: str = "New session") -> Session
Creates a session with the current chat assistant.
Parameters
name: str
The name of the chat session to create.
Returns
- Success: A
Sessionobject containing the following attributes:id:strThe auto-generated unique identifier of the created session.name:strThe name of the created session.message:list[Message]The messages of the created session assistant. Default:[{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]chat_id:strThe ID of the associated chat assistant.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session()
Update chat assistant's session
Session.update(update_message: dict)
Updates the current session of the current chat assistant.
Parameters
update_message: dict[str, Any], Required
A dictionary representing the attributes to update, with only one key:
"name":strThe revised name of the session.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session("session_name")
session.update({"name": "updated_name"})
List chat assistant's sessions
Chat.list_sessions(
page: int = 1,
page_size: int = 30,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> list[Session]
Lists sessions associated with the current chat assistant.
Parameters
page: int
Specifies the page on which the sessions will be displayed. Defaults to 1.
page_size: int
The number of sessions on each page. Defaults to 30.
orderby: str
The field by which sessions should be sorted. Available options:
"create_time"(default)"update_time"
desc: bool
Indicates whether the retrieved sessions should be sorted in descending order. Defaults to True.
id: str
The ID of the chat session to retrieve. Defaults to None.
name: str
The name of the chat session to retrieve. Defaults to None.
Returns
- Success: A list of
Sessionobjects associated with the current chat assistant. - Failure:
Exception.
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
for session in assistant.list_sessions():
print(session)
Delete chat assistant's sessions
Chat.delete_sessions(ids:list[str] = None)
Deletes sessions of the current chat assistant by ID.
Parameters
ids: list[str]
The IDs of the sessions to delete. Defaults to None. If it is not specified, all sessions associated with the current chat assistant will be deleted.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
assistant.delete_sessions(ids=["id_1","id_2"])
Converse with chat assistant
Session.ask(question: str, stream: bool = False) -> Optional[Message, iter[Message]]
Asks a specified chat assistant a question to start an AI-powered conversation.
:::tip NOTE In streaming mode, not all responses include a reference, as this depends on the system's judgement. :::
Parameters
question: str, Required
The question to start an AI-powered conversation.
stream: bool
Indicates whether to output responses in a streaming way:
True: Enable streaming (default).False: Disable streaming.
Returns
- A
Messageobject containing the response to the question ifstreamis set toFalse - An iterator containing multiple
messageobjects (iter[Message]) ifstreamis set toTrue
The following shows the attributes of a Message object:
id: str
The auto-generated message ID.
content: str
The content of the message. Defaults to "Hi! I am your assistant, can I help you?".
reference: list[Chunk]
A list of Chunk objects representing references to the message, each containing the following attributes:
idstr
The chunk ID.contentstr
The content of the chunk.img_idstr
The ID of the snapshot of the chunk. Applicable only when the source of the chunk is an image, PPT, PPTX, or PDF file.document_idstr
The ID of the referenced document.document_namestr
The name of the referenced document.positionlist[str]
The location information of the chunk within the referenced document.dataset_idstr
The ID of the dataset to which the referenced document belongs.similarityfloat
A composite similarity score of the chunk ranging from0to1, with a higher value indicating greater similarity. It is the weighted sum ofvector_similarityandterm_similarity.vector_similarityfloat
A vector similarity score of the chunk ranging from0to1, with a higher value indicating greater similarity between vector embeddings.term_similarityfloat
A keyword similarity score of the chunk ranging from0to1, with a higher value indicating greater similarity between keywords.
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session()
print("\n==================== Miss R =====================\n")
print("Hello. What can I do for you?")
while True:
question = input("\n==================== User =====================\n> ")
print("\n==================== Miss R =====================\n")
cont = ""
for ans in session.ask(question, stream=True):
print(ans.content[len(cont):], end='', flush=True)
cont = ans.content
Create session with agent
Agent.create_session(id,rag) -> Session
Creates a session with the current agent.
Returns
- Success: A
Sessionobject containing the following attributes:id:strThe auto-generated unique identifier of the created session.message:list[Message]The messages of the created session assistant. Default:[{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]agent_id:strThe ID of the associated agent assistant.
- Failure:
Exception
Examples
from ragflow_sdk import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
AGENT_ID = "AGENT_ID"
session = create_session(AGENT_ID,rag_object)
Converse with agent
Session.ask(question: str, stream: bool = False) -> Optional[Message, iter[Message]]
Asks a specified agent a question to start an AI-powered conversation.
:::tip NOTE In streaming mode, not all responses include a reference, as this depends on the system's judgement. :::
Parameters
question: str, Required
The question to start an AI-powered conversation.
stream: bool
Indicates whether to output responses in a streaming way:
True: Enable streaming (default).False: Disable streaming.
Returns
- A
Messageobject containing the response to the question ifstreamis set toFalse - An iterator containing multiple
messageobjects (iter[Message]) ifstreamis set toTrue
The following shows the attributes of a Message object:
id: str
The auto-generated message ID.
content: str
The content of the message. Defaults to "Hi! I am your assistant, can I help you?".
reference: list[Chunk]
A list of Chunk objects representing references to the message, each containing the following attributes:
idstr
The chunk ID.contentstr
The content of the chunk.image_idstr
The ID of the snapshot of the chunk. Applicable only when the source of the chunk is an image, PPT, PPTX, or PDF file.document_idstr
The ID of the referenced document.document_namestr
The name of the referenced document.positionlist[str]
The location information of the chunk within the referenced document.dataset_idstr
The ID of the dataset to which the referenced document belongs.similarityfloat
A composite similarity score of the chunk ranging from0to1, with a higher value indicating greater similarity. It is the weighted sum ofvector_similarityandterm_similarity.vector_similarityfloat
A vector similarity score of the chunk ranging from0to1, with a higher value indicating greater similarity between vector embeddings.term_similarityfloat
A keyword similarity score of the chunk ranging from0to1, with a higher value indicating greater similarity between keywords.
Examples
from ragflow_sdk import RAGFlow,Agent
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
AGENT_id = "AGENT_ID"
session = Agent.create_session(AGENT_id,rag_object)
print("\n===== Miss R ====\n")
print("Hello. What can I do for you?")
while True:
question = input("\n===== User ====\n> ")
print("\n==== Miss R ====\n")
cont = ""
for ans in session.ask(question, stream=True):
print(ans.content[len(cont):], end='', flush=True)
cont = ans.content