ragflow/rag/nlp/search.py
Kevin Hu 43ea312144
Fix: search highlight. (#10616)
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-16 18:45:43 +08:00

592 lines
26 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import logging
import re
import math
import os
from collections import OrderedDict
from dataclasses import dataclass
from rag.prompts.generator import relevant_chunks_with_toc
from rag.settings import TAG_FLD, PAGERANK_FLD
from rag.utils import rmSpace, get_float
from rag.nlp import rag_tokenizer, query
import numpy as np
from rag.utils.doc_store_conn import DocStoreConnection, MatchDenseExpr, FusionExpr, OrderByExpr
def index_name(uid): return f"ragflow_{uid}"
class Dealer:
def __init__(self, dataStore: DocStoreConnection):
self.qryr = query.FulltextQueryer()
self.dataStore = dataStore
@dataclass
class SearchResult:
total: int
ids: list[str]
query_vector: list[float] | None = None
field: dict | None = None
highlight: dict | None = None
aggregation: list | dict | None = None
keywords: list[str] | None = None
group_docs: list[list] | None = None
def get_vector(self, txt, emb_mdl, topk=10, similarity=0.1):
qv, _ = emb_mdl.encode_queries(txt)
shape = np.array(qv).shape
if len(shape) > 1:
raise Exception(
f"Dealer.get_vector returned array's shape {shape} doesn't match expectation(exact one dimension).")
embedding_data = [get_float(v) for v in qv]
vector_column_name = f"q_{len(embedding_data)}_vec"
return MatchDenseExpr(vector_column_name, embedding_data, 'float', 'cosine', topk, {"similarity": similarity})
def get_filters(self, req):
condition = dict()
for key, field in {"kb_ids": "kb_id", "doc_ids": "doc_id"}.items():
if key in req and req[key] is not None:
condition[field] = req[key]
# TODO(yzc): `available_int` is nullable however infinity doesn't support nullable columns.
for key in ["knowledge_graph_kwd", "available_int", "entity_kwd", "from_entity_kwd", "to_entity_kwd", "removed_kwd"]:
if key in req and req[key] is not None:
condition[key] = req[key]
return condition
def search(self, req, idx_names: str | list[str],
kb_ids: list[str],
emb_mdl=None,
highlight: bool | list = False,
rank_feature: dict | None = None
):
filters = self.get_filters(req)
orderBy = OrderByExpr()
pg = int(req.get("page", 1)) - 1
topk = int(req.get("topk", 1024))
ps = int(req.get("size", topk))
offset, limit = pg * ps, ps
src = req.get("fields",
["docnm_kwd", "content_ltks", "kb_id", "img_id", "title_tks", "important_kwd", "position_int",
"doc_id", "page_num_int", "top_int", "create_timestamp_flt", "knowledge_graph_kwd",
"question_kwd", "question_tks", "doc_type_kwd",
"available_int", "content_with_weight", PAGERANK_FLD, TAG_FLD])
kwds = set([])
qst = req.get("question", "")
q_vec = []
if not qst:
if req.get("sort"):
orderBy.asc("page_num_int")
orderBy.asc("top_int")
orderBy.desc("create_timestamp_flt")
res = self.dataStore.search(src, [], filters, [], orderBy, offset, limit, idx_names, kb_ids)
total = self.dataStore.getTotal(res)
logging.debug("Dealer.search TOTAL: {}".format(total))
else:
highlightFields = ["content_ltks", "title_tks"]
if not highlight:
highlightFields = []
elif isinstance(highlight, list):
highlightFields = highlight
matchText, keywords = self.qryr.question(qst, min_match=0.3)
if emb_mdl is None:
matchExprs = [matchText]
res = self.dataStore.search(src, highlightFields, filters, matchExprs, orderBy, offset, limit,
idx_names, kb_ids, rank_feature=rank_feature)
total = self.dataStore.getTotal(res)
logging.debug("Dealer.search TOTAL: {}".format(total))
else:
matchDense = self.get_vector(qst, emb_mdl, topk, req.get("similarity", 0.1))
q_vec = matchDense.embedding_data
src.append(f"q_{len(q_vec)}_vec")
fusionExpr = FusionExpr("weighted_sum", topk, {"weights": "0.05,0.95"})
matchExprs = [matchText, matchDense, fusionExpr]
res = self.dataStore.search(src, highlightFields, filters, matchExprs, orderBy, offset, limit,
idx_names, kb_ids, rank_feature=rank_feature)
total = self.dataStore.getTotal(res)
logging.debug("Dealer.search TOTAL: {}".format(total))
# If result is empty, try again with lower min_match
if total == 0:
if filters.get("doc_id"):
res = self.dataStore.search(src, [], filters, [], orderBy, offset, limit, idx_names, kb_ids)
total = self.dataStore.getTotal(res)
else:
matchText, _ = self.qryr.question(qst, min_match=0.1)
matchDense.extra_options["similarity"] = 0.17
res = self.dataStore.search(src, highlightFields, filters, [matchText, matchDense, fusionExpr],
orderBy, offset, limit, idx_names, kb_ids, rank_feature=rank_feature)
total = self.dataStore.getTotal(res)
logging.debug("Dealer.search 2 TOTAL: {}".format(total))
for k in keywords:
kwds.add(k)
for kk in rag_tokenizer.fine_grained_tokenize(k).split():
if len(kk) < 2:
continue
if kk in kwds:
continue
kwds.add(kk)
logging.debug(f"TOTAL: {total}")
ids = self.dataStore.getChunkIds(res)
keywords = list(kwds)
highlight = self.dataStore.getHighlight(res, keywords, "content_with_weight")
aggs = self.dataStore.getAggregation(res, "docnm_kwd")
return self.SearchResult(
total=total,
ids=ids,
query_vector=q_vec,
aggregation=aggs,
highlight=highlight,
field=self.dataStore.getFields(res, src + ["_score"]),
keywords=keywords
)
@staticmethod
def trans2floats(txt):
return [get_float(t) for t in txt.split("\t")]
def insert_citations(self, answer, chunks, chunk_v,
embd_mdl, tkweight=0.1, vtweight=0.9):
assert len(chunks) == len(chunk_v)
if not chunks:
return answer, set([])
pieces = re.split(r"(```)", answer)
if len(pieces) >= 3:
i = 0
pieces_ = []
while i < len(pieces):
if pieces[i] == "```":
st = i
i += 1
while i < len(pieces) and pieces[i] != "```":
i += 1
if i < len(pieces):
i += 1
pieces_.append("".join(pieces[st: i]) + "\n")
else:
pieces_.extend(
re.split(
r"([^\|][;。?!\n]|[a-z][.?;!][ \n])",
pieces[i]))
i += 1
pieces = pieces_
else:
pieces = re.split(r"([^\|][;。?!\n]|[a-z][.?;!][ \n])", answer)
for i in range(1, len(pieces)):
if re.match(r"([^\|][;。?!\n]|[a-z][.?;!][ \n])", pieces[i]):
pieces[i - 1] += pieces[i][0]
pieces[i] = pieces[i][1:]
idx = []
pieces_ = []
for i, t in enumerate(pieces):
if len(t) < 5:
continue
idx.append(i)
pieces_.append(t)
logging.debug("{} => {}".format(answer, pieces_))
if not pieces_:
return answer, set([])
ans_v, _ = embd_mdl.encode(pieces_)
for i in range(len(chunk_v)):
if len(ans_v[0]) != len(chunk_v[i]):
chunk_v[i] = [0.0]*len(ans_v[0])
logging.warning("The dimension of query and chunk do not match: {} vs. {}".format(len(ans_v[0]), len(chunk_v[i])))
assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
len(ans_v[0]), len(chunk_v[0]))
chunks_tks = [rag_tokenizer.tokenize(self.qryr.rmWWW(ck)).split()
for ck in chunks]
cites = {}
thr = 0.63
while thr > 0.3 and len(cites.keys()) == 0 and pieces_ and chunks_tks:
for i, a in enumerate(pieces_):
sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i],
chunk_v,
rag_tokenizer.tokenize(
self.qryr.rmWWW(pieces_[i])).split(),
chunks_tks,
tkweight, vtweight)
mx = np.max(sim) * 0.99
logging.debug("{} SIM: {}".format(pieces_[i], mx))
if mx < thr:
continue
cites[idx[i]] = list(
set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4]
thr *= 0.8
res = ""
seted = set([])
for i, p in enumerate(pieces):
res += p
if i not in idx:
continue
if i not in cites:
continue
for c in cites[i]:
assert int(c) < len(chunk_v)
for c in cites[i]:
if c in seted:
continue
res += f" [ID:{c}]"
seted.add(c)
return res, seted
def _rank_feature_scores(self, query_rfea, search_res):
## For rank feature(tag_fea) scores.
rank_fea = []
pageranks = []
for chunk_id in search_res.ids:
pageranks.append(search_res.field[chunk_id].get(PAGERANK_FLD, 0))
pageranks = np.array(pageranks, dtype=float)
if not query_rfea:
return np.array([0 for _ in range(len(search_res.ids))]) + pageranks
q_denor = np.sqrt(np.sum([s*s for t,s in query_rfea.items() if t != PAGERANK_FLD]))
for i in search_res.ids:
nor, denor = 0, 0
if not search_res.field[i].get(TAG_FLD):
rank_fea.append(0)
continue
for t, sc in eval(search_res.field[i].get(TAG_FLD, "{}")).items():
if t in query_rfea:
nor += query_rfea[t] * sc
denor += sc * sc
if denor == 0:
rank_fea.append(0)
else:
rank_fea.append(nor/np.sqrt(denor)/q_denor)
return np.array(rank_fea)*10. + pageranks
def rerank(self, sres, query, tkweight=0.3,
vtweight=0.7, cfield="content_ltks",
rank_feature: dict | None = None
):
_, keywords = self.qryr.question(query)
vector_size = len(sres.query_vector)
vector_column = f"q_{vector_size}_vec"
zero_vector = [0.0] * vector_size
ins_embd = []
for chunk_id in sres.ids:
vector = sres.field[chunk_id].get(vector_column, zero_vector)
if isinstance(vector, str):
vector = [get_float(v) for v in vector.split("\t")]
ins_embd.append(vector)
if not ins_embd:
return [], [], []
for i in sres.ids:
if isinstance(sres.field[i].get("important_kwd", []), str):
sres.field[i]["important_kwd"] = [sres.field[i]["important_kwd"]]
ins_tw = []
for i in sres.ids:
content_ltks = list(OrderedDict.fromkeys(sres.field[i][cfield].split()))
title_tks = [t for t in sres.field[i].get("title_tks", "").split() if t]
question_tks = [t for t in sres.field[i].get("question_tks", "").split() if t]
important_kwd = sres.field[i].get("important_kwd", [])
tks = content_ltks + title_tks * 2 + important_kwd * 5 + question_tks * 6
ins_tw.append(tks)
## For rank feature(tag_fea) scores.
rank_fea = self._rank_feature_scores(rank_feature, sres)
sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
ins_embd,
keywords,
ins_tw, tkweight, vtweight)
return sim + rank_fea, tksim, vtsim
def rerank_by_model(self, rerank_mdl, sres, query, tkweight=0.3,
vtweight=0.7, cfield="content_ltks",
rank_feature: dict | None = None):
_, keywords = self.qryr.question(query)
for i in sres.ids:
if isinstance(sres.field[i].get("important_kwd", []), str):
sres.field[i]["important_kwd"] = [sres.field[i]["important_kwd"]]
ins_tw = []
for i in sres.ids:
content_ltks = sres.field[i][cfield].split()
title_tks = [t for t in sres.field[i].get("title_tks", "").split() if t]
important_kwd = sres.field[i].get("important_kwd", [])
tks = content_ltks + title_tks + important_kwd
ins_tw.append(tks)
tksim = self.qryr.token_similarity(keywords, ins_tw)
vtsim, _ = rerank_mdl.similarity(query, [rmSpace(" ".join(tks)) for tks in ins_tw])
## For rank feature(tag_fea) scores.
rank_fea = self._rank_feature_scores(rank_feature, sres)
return tkweight * (np.array(tksim)+rank_fea) + vtweight * vtsim, tksim, vtsim
def hybrid_similarity(self, ans_embd, ins_embd, ans, inst):
return self.qryr.hybrid_similarity(ans_embd,
ins_embd,
rag_tokenizer.tokenize(ans).split(),
rag_tokenizer.tokenize(inst).split())
def retrieval(self, question, embd_mdl, tenant_ids, kb_ids, page, page_size, similarity_threshold=0.2,
vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True,
rerank_mdl=None, highlight=False,
rank_feature: dict | None = {PAGERANK_FLD: 10}):
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
if not question:
return ranks
# Ensure RERANK_LIMIT is multiple of page_size
RERANK_LIMIT = math.ceil(64/page_size) * page_size if page_size>1 else 1
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "page": math.ceil(page_size*page/RERANK_LIMIT), "size": RERANK_LIMIT,
"question": question, "vector": True, "topk": top,
"similarity": similarity_threshold,
"available_int": 1}
if isinstance(tenant_ids, str):
tenant_ids = tenant_ids.split(",")
sres = self.search(req, [index_name(tid) for tid in tenant_ids],
kb_ids, embd_mdl, highlight, rank_feature=rank_feature)
if rerank_mdl and sres.total > 0:
sim, tsim, vsim = self.rerank_by_model(rerank_mdl,
sres, question, 1 - vector_similarity_weight,
vector_similarity_weight,
rank_feature=rank_feature)
else:
lower_case_doc_engine = os.getenv('DOC_ENGINE', 'elasticsearch')
if lower_case_doc_engine == "elasticsearch":
# ElasticSearch doesn't normalize each way score before fusion.
sim, tsim, vsim = self.rerank(
sres, question, 1 - vector_similarity_weight, vector_similarity_weight,
rank_feature=rank_feature)
else:
# Don't need rerank here since Infinity normalizes each way score before fusion.
sim = [sres.field[id].get("_score", 0.0) for id in sres.ids]
tsim = sim
vsim = sim
# Already paginated in search function
begin = ((page % (RERANK_LIMIT//page_size)) - 1) * page_size
sim = sim[begin : begin + page_size]
sim_np = np.array(sim)
idx = np.argsort(sim_np * -1)
dim = len(sres.query_vector)
vector_column = f"q_{dim}_vec"
zero_vector = [0.0] * dim
filtered_count = (sim_np >= similarity_threshold).sum()
ranks["total"] = int(filtered_count) # Convert from np.int64 to Python int otherwise JSON serializable error
for i in idx:
if sim[i] < similarity_threshold:
break
id = sres.ids[i]
chunk = sres.field[id]
dnm = chunk.get("docnm_kwd", "")
did = chunk.get("doc_id", "")
if len(ranks["chunks"]) >= page_size:
if aggs:
if dnm not in ranks["doc_aggs"]:
ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
ranks["doc_aggs"][dnm]["count"] += 1
continue
break
position_int = chunk.get("position_int", [])
d = {
"chunk_id": id,
"content_ltks": chunk["content_ltks"],
"content_with_weight": chunk["content_with_weight"],
"doc_id": did,
"docnm_kwd": dnm,
"kb_id": chunk["kb_id"],
"important_kwd": chunk.get("important_kwd", []),
"image_id": chunk.get("img_id", ""),
"similarity": sim[i],
"vector_similarity": vsim[i],
"term_similarity": tsim[i],
"vector": chunk.get(vector_column, zero_vector),
"positions": position_int,
"doc_type_kwd": chunk.get("doc_type_kwd", "")
}
if highlight and sres.highlight:
if id in sres.highlight:
d["highlight"] = rmSpace(sres.highlight[id])
else:
d["highlight"] = d["content_with_weight"]
ranks["chunks"].append(d)
if dnm not in ranks["doc_aggs"]:
ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
ranks["doc_aggs"][dnm]["count"] += 1
ranks["doc_aggs"] = [{"doc_name": k,
"doc_id": v["doc_id"],
"count": v["count"]} for k,
v in sorted(ranks["doc_aggs"].items(),
key=lambda x: x[1]["count"] * -1)]
ranks["chunks"] = ranks["chunks"][:page_size]
return ranks
def sql_retrieval(self, sql, fetch_size=128, format="json"):
tbl = self.dataStore.sql(sql, fetch_size, format)
return tbl
def chunk_list(self, doc_id: str, tenant_id: str,
kb_ids: list[str], max_count=1024,
offset=0,
fields=["docnm_kwd", "content_with_weight", "img_id"],
sort_by_position: bool = False):
condition = {"doc_id": doc_id}
fields_set = set(fields or [])
if sort_by_position:
for need in ("page_num_int", "position_int", "top_int"):
if need not in fields_set:
fields_set.add(need)
fields = list(fields_set)
orderBy = OrderByExpr()
if sort_by_position:
orderBy.asc("page_num_int")
orderBy.asc("position_int")
orderBy.asc("top_int")
res = []
bs = 128
for p in range(offset, max_count, bs):
es_res = self.dataStore.search(fields, [], condition, [], orderBy, p, bs, index_name(tenant_id),
kb_ids)
dict_chunks = self.dataStore.getFields(es_res, fields)
for id, doc in dict_chunks.items():
doc["id"] = id
if dict_chunks:
res.extend(dict_chunks.values())
if len(dict_chunks.values()) < bs:
break
return res
def all_tags(self, tenant_id: str, kb_ids: list[str], S=1000):
if not self.dataStore.indexExist(index_name(tenant_id), kb_ids[0]):
return []
res = self.dataStore.search([], [], {}, [], OrderByExpr(), 0, 0, index_name(tenant_id), kb_ids, ["tag_kwd"])
return self.dataStore.getAggregation(res, "tag_kwd")
def all_tags_in_portion(self, tenant_id: str, kb_ids: list[str], S=1000):
res = self.dataStore.search([], [], {}, [], OrderByExpr(), 0, 0, index_name(tenant_id), kb_ids, ["tag_kwd"])
res = self.dataStore.getAggregation(res, "tag_kwd")
total = np.sum([c for _, c in res])
return {t: (c + 1) / (total + S) for t, c in res}
def tag_content(self, tenant_id: str, kb_ids: list[str], doc, all_tags, topn_tags=3, keywords_topn=30, S=1000):
idx_nm = index_name(tenant_id)
match_txt = self.qryr.paragraph(doc["title_tks"] + " " + doc["content_ltks"], doc.get("important_kwd", []), keywords_topn)
res = self.dataStore.search([], [], {}, [match_txt], OrderByExpr(), 0, 0, idx_nm, kb_ids, ["tag_kwd"])
aggs = self.dataStore.getAggregation(res, "tag_kwd")
if not aggs:
return False
cnt = np.sum([c for _, c in aggs])
tag_fea = sorted([(a, round(0.1*(c + 1) / (cnt + S) / max(1e-6, all_tags.get(a, 0.0001)))) for a, c in aggs],
key=lambda x: x[1] * -1)[:topn_tags]
doc[TAG_FLD] = {a.replace(".", "_"): c for a, c in tag_fea if c > 0}
return True
def tag_query(self, question: str, tenant_ids: str | list[str], kb_ids: list[str], all_tags, topn_tags=3, S=1000):
if isinstance(tenant_ids, str):
idx_nms = index_name(tenant_ids)
else:
idx_nms = [index_name(tid) for tid in tenant_ids]
match_txt, _ = self.qryr.question(question, min_match=0.0)
res = self.dataStore.search([], [], {}, [match_txt], OrderByExpr(), 0, 0, idx_nms, kb_ids, ["tag_kwd"])
aggs = self.dataStore.getAggregation(res, "tag_kwd")
if not aggs:
return {}
cnt = np.sum([c for _, c in aggs])
tag_fea = sorted([(a, round(0.1*(c + 1) / (cnt + S) / max(1e-6, all_tags.get(a, 0.0001)))) for a, c in aggs],
key=lambda x: x[1] * -1)[:topn_tags]
return {a.replace(".", "_"): max(1, c) for a, c in tag_fea}
def retrieval_by_toc(self, query:str, chunks:list[dict], tenant_ids:list[str], chat_mdl, topn: int=6):
if not chunks:
return []
idx_nms = [index_name(tid) for tid in tenant_ids]
ranks, doc_id2kb_id = {}, {}
for ck in chunks:
if ck["doc_id"] not in ranks:
ranks[ck["doc_id"]] = 0
ranks[ck["doc_id"]] += ck["similarity"]
doc_id2kb_id[ck["doc_id"]] = ck["kb_id"]
doc_id = sorted(ranks.items(), key=lambda x: x[1]*-1.)[0][0]
kb_ids = [doc_id2kb_id[doc_id]]
es_res = self.dataStore.search(["content_with_weight"], [], {"doc_id": doc_id, "toc_kwd": "toc"}, [], OrderByExpr(), 0, 128, idx_nms,
kb_ids)
toc = []
dict_chunks = self.dataStore.getFields(es_res, ["content_with_weight"])
for _, doc in dict_chunks.items():
try:
toc.extend(json.loads(doc["content_with_weight"]))
except Exception as e:
logging.exception(e)
if not toc:
return chunks
ids = relevant_chunks_with_toc(query, toc, chat_mdl, topn*2)
if not ids:
return chunks
vector_size = 1024
id2idx = {ck["chunk_id"]: i for i, ck in enumerate(chunks)}
for cid, sim in ids:
if cid in id2idx:
chunks[id2idx[cid]]["similarity"] += sim
continue
chunk = self.dataStore.get(cid, idx_nms, kb_ids)
d = {
"chunk_id": cid,
"content_ltks": chunk["content_ltks"],
"content_with_weight": chunk["content_with_weight"],
"doc_id": doc_id,
"docnm_kwd": chunk.get("docnm_kwd", ""),
"kb_id": chunk["kb_id"],
"important_kwd": chunk.get("important_kwd", []),
"image_id": chunk.get("img_id", ""),
"similarity": sim,
"vector_similarity": sim,
"term_similarity": sim,
"vector": [0.0] * vector_size,
"positions": chunk.get("position_int", []),
"doc_type_kwd": chunk.get("doc_type_kwd", "")
}
for k in chunk.keys():
if k[-4:] == "_vec":
d["vector"] = chunk[k]
vector_size = len(chunk[k])
break
chunks.append(d)
return sorted(chunks, key=lambda x:x["similarity"]*-1)[:topn]