mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-11-04 03:39:41 +00:00 
			
		
		
		
	### What problem does this PR solve? - Update readme - Add license ### Type of change - [x] Documentation Update --------- Signed-off-by: Jin Hai <haijin.chn@gmail.com>
		
			
				
	
	
		
			367 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			367 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#  Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
#  you may not use this file except in compliance with the License.
 | 
						|
#  You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#      http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
#  Unless required by applicable law or agreed to in writing, software
 | 
						|
#  distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
#  See the License for the specific language governing permissions and
 | 
						|
#  limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import copy
 | 
						|
import re
 | 
						|
import numpy as np
 | 
						|
import cv2
 | 
						|
from shapely.geometry import Polygon
 | 
						|
import pyclipper
 | 
						|
 | 
						|
 | 
						|
def build_post_process(config, global_config=None):
 | 
						|
    support_dict = ['DBPostProcess', 'CTCLabelDecode']
 | 
						|
 | 
						|
    config = copy.deepcopy(config)
 | 
						|
    module_name = config.pop('name')
 | 
						|
    if module_name == "None":
 | 
						|
        return
 | 
						|
    if global_config is not None:
 | 
						|
        config.update(global_config)
 | 
						|
    assert module_name in support_dict, Exception(
 | 
						|
        'post process only support {}'.format(support_dict))
 | 
						|
    module_class = eval(module_name)(**config)
 | 
						|
    return module_class
 | 
						|
 | 
						|
 | 
						|
class DBPostProcess(object):
 | 
						|
    """
 | 
						|
    The post process for Differentiable Binarization (DB).
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self,
 | 
						|
                 thresh=0.3,
 | 
						|
                 box_thresh=0.7,
 | 
						|
                 max_candidates=1000,
 | 
						|
                 unclip_ratio=2.0,
 | 
						|
                 use_dilation=False,
 | 
						|
                 score_mode="fast",
 | 
						|
                 box_type='quad',
 | 
						|
                 **kwargs):
 | 
						|
        self.thresh = thresh
 | 
						|
        self.box_thresh = box_thresh
 | 
						|
        self.max_candidates = max_candidates
 | 
						|
        self.unclip_ratio = unclip_ratio
 | 
						|
        self.min_size = 3
 | 
						|
        self.score_mode = score_mode
 | 
						|
        self.box_type = box_type
 | 
						|
        assert score_mode in [
 | 
						|
            "slow", "fast"
 | 
						|
        ], "Score mode must be in [slow, fast] but got: {}".format(score_mode)
 | 
						|
 | 
						|
        self.dilation_kernel = None if not use_dilation else np.array(
 | 
						|
            [[1, 1], [1, 1]])
 | 
						|
 | 
						|
    def polygons_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
 | 
						|
        '''
 | 
						|
        _bitmap: single map with shape (1, H, W),
 | 
						|
            whose values are binarized as {0, 1}
 | 
						|
        '''
 | 
						|
 | 
						|
        bitmap = _bitmap
 | 
						|
        height, width = bitmap.shape
 | 
						|
 | 
						|
        boxes = []
 | 
						|
        scores = []
 | 
						|
 | 
						|
        contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8),
 | 
						|
                                       cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
 | 
						|
 | 
						|
        for contour in contours[:self.max_candidates]:
 | 
						|
            epsilon = 0.002 * cv2.arcLength(contour, True)
 | 
						|
            approx = cv2.approxPolyDP(contour, epsilon, True)
 | 
						|
            points = approx.reshape((-1, 2))
 | 
						|
            if points.shape[0] < 4:
 | 
						|
                continue
 | 
						|
 | 
						|
            score = self.box_score_fast(pred, points.reshape(-1, 2))
 | 
						|
            if self.box_thresh > score:
 | 
						|
                continue
 | 
						|
 | 
						|
            if points.shape[0] > 2:
 | 
						|
                box = self.unclip(points, self.unclip_ratio)
 | 
						|
                if len(box) > 1:
 | 
						|
                    continue
 | 
						|
            else:
 | 
						|
                continue
 | 
						|
            box = box.reshape(-1, 2)
 | 
						|
 | 
						|
            _, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))
 | 
						|
            if sside < self.min_size + 2:
 | 
						|
                continue
 | 
						|
 | 
						|
            box = np.array(box)
 | 
						|
            box[:, 0] = np.clip(
 | 
						|
                np.round(box[:, 0] / width * dest_width), 0, dest_width)
 | 
						|
            box[:, 1] = np.clip(
 | 
						|
                np.round(box[:, 1] / height * dest_height), 0, dest_height)
 | 
						|
            boxes.append(box.tolist())
 | 
						|
            scores.append(score)
 | 
						|
        return boxes, scores
 | 
						|
 | 
						|
    def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
 | 
						|
        '''
 | 
						|
        _bitmap: single map with shape (1, H, W),
 | 
						|
                whose values are binarized as {0, 1}
 | 
						|
        '''
 | 
						|
 | 
						|
        bitmap = _bitmap
 | 
						|
        height, width = bitmap.shape
 | 
						|
 | 
						|
        outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
 | 
						|
                                cv2.CHAIN_APPROX_SIMPLE)
 | 
						|
        if len(outs) == 3:
 | 
						|
            img, contours, _ = outs[0], outs[1], outs[2]
 | 
						|
        elif len(outs) == 2:
 | 
						|
            contours, _ = outs[0], outs[1]
 | 
						|
 | 
						|
        num_contours = min(len(contours), self.max_candidates)
 | 
						|
 | 
						|
        boxes = []
 | 
						|
        scores = []
 | 
						|
        for index in range(num_contours):
 | 
						|
            contour = contours[index]
 | 
						|
            points, sside = self.get_mini_boxes(contour)
 | 
						|
            if sside < self.min_size:
 | 
						|
                continue
 | 
						|
            points = np.array(points)
 | 
						|
            if self.score_mode == "fast":
 | 
						|
                score = self.box_score_fast(pred, points.reshape(-1, 2))
 | 
						|
            else:
 | 
						|
                score = self.box_score_slow(pred, contour)
 | 
						|
            if self.box_thresh > score:
 | 
						|
                continue
 | 
						|
 | 
						|
            box = self.unclip(points, self.unclip_ratio).reshape(-1, 1, 2)
 | 
						|
            box, sside = self.get_mini_boxes(box)
 | 
						|
            if sside < self.min_size + 2:
 | 
						|
                continue
 | 
						|
            box = np.array(box)
 | 
						|
 | 
						|
            box[:, 0] = np.clip(
 | 
						|
                np.round(box[:, 0] / width * dest_width), 0, dest_width)
 | 
						|
            box[:, 1] = np.clip(
 | 
						|
                np.round(box[:, 1] / height * dest_height), 0, dest_height)
 | 
						|
            boxes.append(box.astype("int32"))
 | 
						|
            scores.append(score)
 | 
						|
        return np.array(boxes, dtype="int32"), scores
 | 
						|
 | 
						|
    def unclip(self, box, unclip_ratio):
 | 
						|
        poly = Polygon(box)
 | 
						|
        distance = poly.area * unclip_ratio / poly.length
 | 
						|
        offset = pyclipper.PyclipperOffset()
 | 
						|
        offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
 | 
						|
        expanded = np.array(offset.Execute(distance))
 | 
						|
        return expanded
 | 
						|
 | 
						|
    def get_mini_boxes(self, contour):
 | 
						|
        bounding_box = cv2.minAreaRect(contour)
 | 
						|
        points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
 | 
						|
 | 
						|
        index_1, index_2, index_3, index_4 = 0, 1, 2, 3
 | 
						|
        if points[1][1] > points[0][1]:
 | 
						|
            index_1 = 0
 | 
						|
            index_4 = 1
 | 
						|
        else:
 | 
						|
            index_1 = 1
 | 
						|
            index_4 = 0
 | 
						|
        if points[3][1] > points[2][1]:
 | 
						|
            index_2 = 2
 | 
						|
            index_3 = 3
 | 
						|
        else:
 | 
						|
            index_2 = 3
 | 
						|
            index_3 = 2
 | 
						|
 | 
						|
        box = [
 | 
						|
            points[index_1], points[index_2], points[index_3], points[index_4]
 | 
						|
        ]
 | 
						|
        return box, min(bounding_box[1])
 | 
						|
 | 
						|
    def box_score_fast(self, bitmap, _box):
 | 
						|
        '''
 | 
						|
        box_score_fast: use bbox mean score as the mean score
 | 
						|
        '''
 | 
						|
        h, w = bitmap.shape[:2]
 | 
						|
        box = _box.copy()
 | 
						|
        xmin = np.clip(np.floor(box[:, 0].min()).astype("int32"), 0, w - 1)
 | 
						|
        xmax = np.clip(np.ceil(box[:, 0].max()).astype("int32"), 0, w - 1)
 | 
						|
        ymin = np.clip(np.floor(box[:, 1].min()).astype("int32"), 0, h - 1)
 | 
						|
        ymax = np.clip(np.ceil(box[:, 1].max()).astype("int32"), 0, h - 1)
 | 
						|
 | 
						|
        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
 | 
						|
        box[:, 0] = box[:, 0] - xmin
 | 
						|
        box[:, 1] = box[:, 1] - ymin
 | 
						|
        cv2.fillPoly(mask, box.reshape(1, -1, 2).astype("int32"), 1)
 | 
						|
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
 | 
						|
 | 
						|
    def box_score_slow(self, bitmap, contour):
 | 
						|
        '''
 | 
						|
        box_score_slow: use polyon mean score as the mean score
 | 
						|
        '''
 | 
						|
        h, w = bitmap.shape[:2]
 | 
						|
        contour = contour.copy()
 | 
						|
        contour = np.reshape(contour, (-1, 2))
 | 
						|
 | 
						|
        xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
 | 
						|
        xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
 | 
						|
        ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
 | 
						|
        ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)
 | 
						|
 | 
						|
        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
 | 
						|
 | 
						|
        contour[:, 0] = contour[:, 0] - xmin
 | 
						|
        contour[:, 1] = contour[:, 1] - ymin
 | 
						|
 | 
						|
        cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype("int32"), 1)
 | 
						|
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
 | 
						|
 | 
						|
    def __call__(self, outs_dict, shape_list):
 | 
						|
        pred = outs_dict['maps']
 | 
						|
        if not isinstance(pred, np.ndarray):
 | 
						|
            pred = pred.numpy()
 | 
						|
        pred = pred[:, 0, :, :]
 | 
						|
        segmentation = pred > self.thresh
 | 
						|
 | 
						|
        boxes_batch = []
 | 
						|
        for batch_index in range(pred.shape[0]):
 | 
						|
            src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
 | 
						|
            if self.dilation_kernel is not None:
 | 
						|
                mask = cv2.dilate(
 | 
						|
                    np.array(segmentation[batch_index]).astype(np.uint8),
 | 
						|
                    self.dilation_kernel)
 | 
						|
            else:
 | 
						|
                mask = segmentation[batch_index]
 | 
						|
            if self.box_type == 'poly':
 | 
						|
                boxes, scores = self.polygons_from_bitmap(pred[batch_index],
 | 
						|
                                                          mask, src_w, src_h)
 | 
						|
            elif self.box_type == 'quad':
 | 
						|
                boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
 | 
						|
                                                       src_w, src_h)
 | 
						|
            else:
 | 
						|
                raise ValueError(
 | 
						|
                    "box_type can only be one of ['quad', 'poly']")
 | 
						|
 | 
						|
            boxes_batch.append({'points': boxes})
 | 
						|
        return boxes_batch
 | 
						|
 | 
						|
 | 
						|
class BaseRecLabelDecode(object):
 | 
						|
    """ Convert between text-label and text-index """
 | 
						|
 | 
						|
    def __init__(self, character_dict_path=None, use_space_char=False):
 | 
						|
        self.beg_str = "sos"
 | 
						|
        self.end_str = "eos"
 | 
						|
        self.reverse = False
 | 
						|
        self.character_str = []
 | 
						|
 | 
						|
        if character_dict_path is None:
 | 
						|
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
 | 
						|
            dict_character = list(self.character_str)
 | 
						|
        else:
 | 
						|
            with open(character_dict_path, "rb") as fin:
 | 
						|
                lines = fin.readlines()
 | 
						|
                for line in lines:
 | 
						|
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
 | 
						|
                    self.character_str.append(line)
 | 
						|
            if use_space_char:
 | 
						|
                self.character_str.append(" ")
 | 
						|
            dict_character = list(self.character_str)
 | 
						|
            if 'arabic' in character_dict_path:
 | 
						|
                self.reverse = True
 | 
						|
 | 
						|
        dict_character = self.add_special_char(dict_character)
 | 
						|
        self.dict = {}
 | 
						|
        for i, char in enumerate(dict_character):
 | 
						|
            self.dict[char] = i
 | 
						|
        self.character = dict_character
 | 
						|
 | 
						|
    def pred_reverse(self, pred):
 | 
						|
        pred_re = []
 | 
						|
        c_current = ''
 | 
						|
        for c in pred:
 | 
						|
            if not bool(re.search('[a-zA-Z0-9 :*./%+-]', c)):
 | 
						|
                if c_current != '':
 | 
						|
                    pred_re.append(c_current)
 | 
						|
                pred_re.append(c)
 | 
						|
                c_current = ''
 | 
						|
            else:
 | 
						|
                c_current += c
 | 
						|
        if c_current != '':
 | 
						|
            pred_re.append(c_current)
 | 
						|
 | 
						|
        return ''.join(pred_re[::-1])
 | 
						|
 | 
						|
    def add_special_char(self, dict_character):
 | 
						|
        return dict_character
 | 
						|
 | 
						|
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
 | 
						|
        """ convert text-index into text-label. """
 | 
						|
        result_list = []
 | 
						|
        ignored_tokens = self.get_ignored_tokens()
 | 
						|
        batch_size = len(text_index)
 | 
						|
        for batch_idx in range(batch_size):
 | 
						|
            selection = np.ones(len(text_index[batch_idx]), dtype=bool)
 | 
						|
            if is_remove_duplicate:
 | 
						|
                selection[1:] = text_index[batch_idx][1:] != text_index[
 | 
						|
                    batch_idx][:-1]
 | 
						|
            for ignored_token in ignored_tokens:
 | 
						|
                selection &= text_index[batch_idx] != ignored_token
 | 
						|
 | 
						|
            char_list = [
 | 
						|
                self.character[text_id]
 | 
						|
                for text_id in text_index[batch_idx][selection]
 | 
						|
            ]
 | 
						|
            if text_prob is not None:
 | 
						|
                conf_list = text_prob[batch_idx][selection]
 | 
						|
            else:
 | 
						|
                conf_list = [1] * len(selection)
 | 
						|
            if len(conf_list) == 0:
 | 
						|
                conf_list = [0]
 | 
						|
 | 
						|
            text = ''.join(char_list)
 | 
						|
 | 
						|
            if self.reverse:  # for arabic rec
 | 
						|
                text = self.pred_reverse(text)
 | 
						|
 | 
						|
            result_list.append((text, np.mean(conf_list).tolist()))
 | 
						|
        return result_list
 | 
						|
 | 
						|
    def get_ignored_tokens(self):
 | 
						|
        return [0]  # for ctc blank
 | 
						|
 | 
						|
 | 
						|
class CTCLabelDecode(BaseRecLabelDecode):
 | 
						|
    """ Convert between text-label and text-index """
 | 
						|
 | 
						|
    def __init__(self, character_dict_path=None, use_space_char=False,
 | 
						|
                 **kwargs):
 | 
						|
        super(CTCLabelDecode, self).__init__(character_dict_path,
 | 
						|
                                             use_space_char)
 | 
						|
 | 
						|
    def __call__(self, preds, label=None, *args, **kwargs):
 | 
						|
        if isinstance(preds, tuple) or isinstance(preds, list):
 | 
						|
            preds = preds[-1]
 | 
						|
        if not isinstance(preds, np.ndarray):
 | 
						|
            preds = preds.numpy()
 | 
						|
        preds_idx = preds.argmax(axis=2)
 | 
						|
        preds_prob = preds.max(axis=2)
 | 
						|
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
 | 
						|
        if label is None:
 | 
						|
            return text
 | 
						|
        label = self.decode(label)
 | 
						|
        return text, label
 | 
						|
 | 
						|
    def add_special_char(self, dict_character):
 | 
						|
        dict_character = ['blank'] + dict_character
 | 
						|
        return dict_character
 |