mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-10-31 17:59:43 +00:00 
			
		
		
		
	 a25d32496c
			
		
	
	
		a25d32496c
		
			
		
	
	
	
	
		
			
			### What problem does this PR solve? #918 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
		
			
				
	
	
		
			76 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			76 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #
 | |
| #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 | |
| #
 | |
| #  Licensed under the Apache License, Version 2.0 (the "License");
 | |
| #  you may not use this file except in compliance with the License.
 | |
| #  You may obtain a copy of the License at
 | |
| #
 | |
| #      http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| #  Unless required by applicable law or agreed to in writing, software
 | |
| #  distributed under the License is distributed on an "AS IS" BASIS,
 | |
| #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| #  See the License for the specific language governing permissions and
 | |
| #  limitations under the License.
 | |
| #
 | |
| from abc import ABC
 | |
| 
 | |
| import pandas as pd
 | |
| 
 | |
| from api.db import LLMType
 | |
| from api.db.services.knowledgebase_service import KnowledgebaseService
 | |
| from api.db.services.llm_service import LLMBundle
 | |
| from api.settings import retrievaler
 | |
| from graph.component.base import ComponentBase, ComponentParamBase
 | |
| 
 | |
| 
 | |
| class CiteParam(ComponentParamBase):
 | |
| 
 | |
|     """
 | |
|     Define the Retrieval component parameters.
 | |
|     """
 | |
|     def __init__(self):
 | |
|         super().__init__()
 | |
|         self.cite_sources = []
 | |
| 
 | |
|     def check(self):
 | |
|         self.check_empty(self.cite_source, "Please specify where you want to cite from.")
 | |
| 
 | |
| 
 | |
| class Cite(ComponentBase, ABC):
 | |
|     component_name = "Cite"
 | |
| 
 | |
|     def _run(self, history, **kwargs):
 | |
|         input = "\n- ".join(self.get_input()["content"])
 | |
|         sources = [self._canvas.get_component(cpn_id).output()[1] for cpn_id in self._param.cite_source]
 | |
|         query = []
 | |
|         for role, cnt in history[::-1][:self._param.message_history_window_size]:
 | |
|             if role != "user":continue
 | |
|             query.append(cnt)
 | |
|         query = "\n".join(query)
 | |
| 
 | |
|         kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
 | |
|         if not kbs:
 | |
|             raise ValueError("Can't find knowledgebases by {}".format(self._param.kb_ids))
 | |
|         embd_nms = list(set([kb.embd_id for kb in kbs]))
 | |
|         assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
 | |
| 
 | |
|         embd_mdl = LLMBundle(kbs[0].tenant_id, LLMType.EMBEDDING, embd_nms[0])
 | |
| 
 | |
|         rerank_mdl = None
 | |
|         if self._param.rerank_id:
 | |
|             rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
 | |
| 
 | |
|         kbinfos = retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
 | |
|                                         1, self._param.top_n,
 | |
|                                         self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
 | |
|                                         aggs=False, rerank_mdl=rerank_mdl)
 | |
| 
 | |
|         if not kbinfos["chunks"]: return pd.DataFrame()
 | |
|         df = pd.DataFrame(kbinfos["chunks"])
 | |
|         df["content"] = df["content_with_weight"]
 | |
|         del df["content_with_weight"]
 | |
|         return df
 | |
| 
 | |
| 
 |