mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-11-26 06:57:27 +00:00
### What problem does this PR solve? Add model provider DeepInfra. This model list comes from our community. NOTE: most endpoints haven't been tested, but they should work as OpenAI does. ### Type of change - [x] New Feature (non-breaking change which adds functionality)
913 lines
33 KiB
Python
913 lines
33 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import json
|
|
import logging
|
|
import os
|
|
import re
|
|
import threading
|
|
from abc import ABC
|
|
from urllib.parse import urljoin
|
|
|
|
import dashscope
|
|
import google.generativeai as genai
|
|
import numpy as np
|
|
import requests
|
|
from huggingface_hub import snapshot_download
|
|
from ollama import Client
|
|
from openai import OpenAI
|
|
from zhipuai import ZhipuAI
|
|
|
|
from api import settings
|
|
from api.utils.file_utils import get_home_cache_dir
|
|
from api.utils.log_utils import log_exception
|
|
from rag.utils import num_tokens_from_string, truncate
|
|
|
|
|
|
class Base(ABC):
|
|
def __init__(self, key, model_name):
|
|
pass
|
|
|
|
def encode(self, texts: list):
|
|
raise NotImplementedError("Please implement encode method!")
|
|
|
|
def encode_queries(self, text: str):
|
|
raise NotImplementedError("Please implement encode method!")
|
|
|
|
def total_token_count(self, resp):
|
|
try:
|
|
return resp.usage.total_tokens
|
|
except Exception:
|
|
pass
|
|
try:
|
|
return resp["usage"]["total_tokens"]
|
|
except Exception:
|
|
pass
|
|
return 0
|
|
|
|
|
|
class DefaultEmbedding(Base):
|
|
_FACTORY_NAME = "BAAI"
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
|
_model = None
|
|
_model_name = ""
|
|
_model_lock = threading.Lock()
|
|
|
|
def __init__(self, key, model_name, **kwargs):
|
|
"""
|
|
If you have trouble downloading HuggingFace models, -_^ this might help!!
|
|
|
|
For Linux:
|
|
export HF_ENDPOINT=https://hf-mirror.com
|
|
|
|
For Windows:
|
|
Good luck
|
|
^_-
|
|
|
|
"""
|
|
if not settings.LIGHTEN:
|
|
with DefaultEmbedding._model_lock:
|
|
import torch
|
|
from FlagEmbedding import FlagModel
|
|
|
|
if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
|
|
try:
|
|
DefaultEmbedding._model = FlagModel(
|
|
os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
|
|
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
|
|
use_fp16=torch.cuda.is_available(),
|
|
)
|
|
DefaultEmbedding._model_name = model_name
|
|
except Exception:
|
|
model_dir = snapshot_download(
|
|
repo_id="BAAI/bge-large-zh-v1.5", local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), local_dir_use_symlinks=False
|
|
)
|
|
DefaultEmbedding._model = FlagModel(model_dir, query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", use_fp16=torch.cuda.is_available())
|
|
self._model = DefaultEmbedding._model
|
|
self._model_name = DefaultEmbedding._model_name
|
|
|
|
def encode(self, texts: list):
|
|
batch_size = 16
|
|
texts = [truncate(t, 2048) for t in texts]
|
|
token_count = 0
|
|
for t in texts:
|
|
token_count += num_tokens_from_string(t)
|
|
ress = None
|
|
for i in range(0, len(texts), batch_size):
|
|
if ress is None:
|
|
ress = self._model.encode(texts[i : i + batch_size], convert_to_numpy=True)
|
|
else:
|
|
ress = np.concatenate((ress, self._model.encode(texts[i : i + batch_size], convert_to_numpy=True)), axis=0)
|
|
return ress, token_count
|
|
|
|
def encode_queries(self, text: str):
|
|
token_count = num_tokens_from_string(text)
|
|
return self._model.encode_queries([text], convert_to_numpy=False)[0][0].cpu().numpy(), token_count
|
|
|
|
|
|
class OpenAIEmbed(Base):
|
|
_FACTORY_NAME = "OpenAI"
|
|
|
|
def __init__(self, key, model_name="text-embedding-ada-002", base_url="https://api.openai.com/v1"):
|
|
if not base_url:
|
|
base_url = "https://api.openai.com/v1"
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list):
|
|
# OpenAI requires batch size <=16
|
|
batch_size = 16
|
|
texts = [truncate(t, 8191) for t in texts]
|
|
ress = []
|
|
total_tokens = 0
|
|
for i in range(0, len(texts), batch_size):
|
|
res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
|
|
try:
|
|
ress.extend([d.embedding for d in res.data])
|
|
total_tokens += self.total_token_count(res)
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
return np.array(ress), total_tokens
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embeddings.create(input=[truncate(text, 8191)], model=self.model_name)
|
|
return np.array(res.data[0].embedding), self.total_token_count(res)
|
|
|
|
|
|
class LocalAIEmbed(Base):
|
|
_FACTORY_NAME = "LocalAI"
|
|
|
|
def __init__(self, key, model_name, base_url):
|
|
if not base_url:
|
|
raise ValueError("Local embedding model url cannot be None")
|
|
base_url = urljoin(base_url, "v1")
|
|
self.client = OpenAI(api_key="empty", base_url=base_url)
|
|
self.model_name = model_name.split("___")[0]
|
|
|
|
def encode(self, texts: list):
|
|
batch_size = 16
|
|
ress = []
|
|
for i in range(0, len(texts), batch_size):
|
|
res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
|
|
try:
|
|
ress.extend([d.embedding for d in res.data])
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
# local embedding for LmStudio donot count tokens
|
|
return np.array(ress), 1024
|
|
|
|
def encode_queries(self, text):
|
|
embds, cnt = self.encode([text])
|
|
return np.array(embds[0]), cnt
|
|
|
|
|
|
class AzureEmbed(OpenAIEmbed):
|
|
_FACTORY_NAME = "Azure-OpenAI"
|
|
|
|
def __init__(self, key, model_name, **kwargs):
|
|
from openai.lib.azure import AzureOpenAI
|
|
|
|
api_key = json.loads(key).get("api_key", "")
|
|
api_version = json.loads(key).get("api_version", "2024-02-01")
|
|
self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
|
|
self.model_name = model_name
|
|
|
|
|
|
class BaiChuanEmbed(OpenAIEmbed):
|
|
_FACTORY_NAME = "BaiChuan"
|
|
|
|
def __init__(self, key, model_name="Baichuan-Text-Embedding", base_url="https://api.baichuan-ai.com/v1"):
|
|
if not base_url:
|
|
base_url = "https://api.baichuan-ai.com/v1"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class QWenEmbed(Base):
|
|
_FACTORY_NAME = "Tongyi-Qianwen"
|
|
|
|
def __init__(self, key, model_name="text_embedding_v2", **kwargs):
|
|
self.key = key
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list):
|
|
import time
|
|
|
|
import dashscope
|
|
|
|
batch_size = 4
|
|
res = []
|
|
token_count = 0
|
|
texts = [truncate(t, 2048) for t in texts]
|
|
for i in range(0, len(texts), batch_size):
|
|
retry_max = 5
|
|
resp = dashscope.TextEmbedding.call(model=self.model_name, input=texts[i : i + batch_size], api_key=self.key, text_type="document")
|
|
while (resp["output"] is None or resp["output"].get("embeddings") is None) and retry_max > 0:
|
|
time.sleep(10)
|
|
resp = dashscope.TextEmbedding.call(model=self.model_name, input=texts[i : i + batch_size], api_key=self.key, text_type="document")
|
|
retry_max -= 1
|
|
if retry_max == 0 and (resp["output"] is None or resp["output"].get("embeddings") is None):
|
|
if resp.get("message"):
|
|
log_exception(ValueError(f"Retry_max reached, calling embedding model failed: {resp['message']}"))
|
|
else:
|
|
log_exception(ValueError("Retry_max reached, calling embedding model failed"))
|
|
raise
|
|
try:
|
|
embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
|
|
for e in resp["output"]["embeddings"]:
|
|
embds[e["text_index"]] = e["embedding"]
|
|
res.extend(embds)
|
|
token_count += self.total_token_count(resp)
|
|
except Exception as _e:
|
|
log_exception(_e, resp)
|
|
raise
|
|
return np.array(res), token_count
|
|
|
|
def encode_queries(self, text):
|
|
resp = dashscope.TextEmbedding.call(model=self.model_name, input=text[:2048], api_key=self.key, text_type="query")
|
|
try:
|
|
return np.array(resp["output"]["embeddings"][0]["embedding"]), self.total_token_count(resp)
|
|
except Exception as _e:
|
|
log_exception(_e, resp)
|
|
|
|
|
|
class ZhipuEmbed(Base):
|
|
_FACTORY_NAME = "ZHIPU-AI"
|
|
|
|
def __init__(self, key, model_name="embedding-2", **kwargs):
|
|
self.client = ZhipuAI(api_key=key)
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list):
|
|
arr = []
|
|
tks_num = 0
|
|
MAX_LEN = -1
|
|
if self.model_name.lower() == "embedding-2":
|
|
MAX_LEN = 512
|
|
if self.model_name.lower() == "embedding-3":
|
|
MAX_LEN = 3072
|
|
if MAX_LEN > 0:
|
|
texts = [truncate(t, MAX_LEN) for t in texts]
|
|
|
|
for txt in texts:
|
|
res = self.client.embeddings.create(input=txt, model=self.model_name)
|
|
try:
|
|
arr.append(res.data[0].embedding)
|
|
tks_num += self.total_token_count(res)
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
return np.array(arr), tks_num
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embeddings.create(input=text, model=self.model_name)
|
|
try:
|
|
return np.array(res.data[0].embedding), self.total_token_count(res)
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
|
|
|
|
class OllamaEmbed(Base):
|
|
_FACTORY_NAME = "Ollama"
|
|
|
|
_special_tokens = ["<|endoftext|>"]
|
|
|
|
def __init__(self, key, model_name, **kwargs):
|
|
self.client = Client(host=kwargs["base_url"]) if not key or key == "x" else Client(host=kwargs["base_url"], headers={"Authorization": f"Bear {key}"})
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list):
|
|
arr = []
|
|
tks_num = 0
|
|
for txt in texts:
|
|
# remove special tokens if they exist
|
|
for token in OllamaEmbed._special_tokens:
|
|
txt = txt.replace(token, "")
|
|
res = self.client.embeddings(prompt=txt, model=self.model_name, options={"use_mmap": True}, keep_alive=-1)
|
|
try:
|
|
arr.append(res["embedding"])
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
tks_num += 128
|
|
return np.array(arr), tks_num
|
|
|
|
def encode_queries(self, text):
|
|
# remove special tokens if they exist
|
|
for token in OllamaEmbed._special_tokens:
|
|
text = text.replace(token, "")
|
|
res = self.client.embeddings(prompt=text, model=self.model_name, options={"use_mmap": True}, keep_alive=-1)
|
|
try:
|
|
return np.array(res["embedding"]), 128
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
|
|
|
|
class FastEmbed(DefaultEmbedding):
|
|
_FACTORY_NAME = "FastEmbed"
|
|
|
|
def __init__(
|
|
self,
|
|
key: str | None = None,
|
|
model_name: str = "BAAI/bge-small-en-v1.5",
|
|
cache_dir: str | None = None,
|
|
threads: int | None = None,
|
|
**kwargs,
|
|
):
|
|
if not settings.LIGHTEN:
|
|
with FastEmbed._model_lock:
|
|
from fastembed import TextEmbedding
|
|
|
|
if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
|
|
try:
|
|
DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
|
|
DefaultEmbedding._model_name = model_name
|
|
except Exception:
|
|
cache_dir = snapshot_download(
|
|
repo_id="BAAI/bge-small-en-v1.5", local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), local_dir_use_symlinks=False
|
|
)
|
|
DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
|
|
self._model = DefaultEmbedding._model
|
|
self._model_name = model_name
|
|
|
|
def encode(self, texts: list):
|
|
# Using the internal tokenizer to encode the texts and get the total
|
|
# number of tokens
|
|
encodings = self._model.model.tokenizer.encode_batch(texts)
|
|
total_tokens = sum(len(e) for e in encodings)
|
|
|
|
embeddings = [e.tolist() for e in self._model.embed(texts, batch_size=16)]
|
|
|
|
return np.array(embeddings), total_tokens
|
|
|
|
def encode_queries(self, text: str):
|
|
# Using the internal tokenizer to encode the texts and get the total
|
|
# number of tokens
|
|
encoding = self._model.model.tokenizer.encode(text)
|
|
embedding = next(self._model.query_embed(text))
|
|
return np.array(embedding), len(encoding.ids)
|
|
|
|
|
|
class XinferenceEmbed(Base):
|
|
_FACTORY_NAME = "Xinference"
|
|
|
|
def __init__(self, key, model_name="", base_url=""):
|
|
base_url = urljoin(base_url, "v1")
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list):
|
|
batch_size = 16
|
|
ress = []
|
|
total_tokens = 0
|
|
for i in range(0, len(texts), batch_size):
|
|
res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
|
|
try:
|
|
ress.extend([d.embedding for d in res.data])
|
|
total_tokens += self.total_token_count(res)
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
return np.array(ress), total_tokens
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embeddings.create(input=[text], model=self.model_name)
|
|
try:
|
|
return np.array(res.data[0].embedding), self.total_token_count(res)
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
|
|
|
|
class YoudaoEmbed(Base):
|
|
_FACTORY_NAME = "Youdao"
|
|
_client = None
|
|
|
|
def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
|
|
if not settings.LIGHTEN and not YoudaoEmbed._client:
|
|
from BCEmbedding import EmbeddingModel as qanthing
|
|
|
|
try:
|
|
logging.info("LOADING BCE...")
|
|
YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(get_home_cache_dir(), "bce-embedding-base_v1"))
|
|
except Exception:
|
|
YoudaoEmbed._client = qanthing(model_name_or_path=model_name.replace("maidalun1020", "InfiniFlow"))
|
|
|
|
def encode(self, texts: list):
|
|
batch_size = 10
|
|
res = []
|
|
token_count = 0
|
|
for t in texts:
|
|
token_count += num_tokens_from_string(t)
|
|
for i in range(0, len(texts), batch_size):
|
|
embds = YoudaoEmbed._client.encode(texts[i : i + batch_size])
|
|
res.extend(embds)
|
|
return np.array(res), token_count
|
|
|
|
def encode_queries(self, text):
|
|
embds = YoudaoEmbed._client.encode([text])
|
|
return np.array(embds[0]), num_tokens_from_string(text)
|
|
|
|
|
|
class JinaEmbed(Base):
|
|
_FACTORY_NAME = "Jina"
|
|
|
|
def __init__(self, key, model_name="jina-embeddings-v3", base_url="https://api.jina.ai/v1/embeddings"):
|
|
self.base_url = "https://api.jina.ai/v1/embeddings"
|
|
self.headers = {"Content-Type": "application/json", "Authorization": f"Bearer {key}"}
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list):
|
|
texts = [truncate(t, 8196) for t in texts]
|
|
batch_size = 16
|
|
ress = []
|
|
token_count = 0
|
|
for i in range(0, len(texts), batch_size):
|
|
data = {"model": self.model_name, "input": texts[i : i + batch_size], "encoding_type": "float"}
|
|
response = requests.post(self.base_url, headers=self.headers, json=data)
|
|
try:
|
|
res = response.json()
|
|
ress.extend([d["embedding"] for d in res["data"]])
|
|
token_count += self.total_token_count(res)
|
|
except Exception as _e:
|
|
log_exception(_e, response)
|
|
return np.array(ress), token_count
|
|
|
|
def encode_queries(self, text):
|
|
embds, cnt = self.encode([text])
|
|
return np.array(embds[0]), cnt
|
|
|
|
|
|
class MistralEmbed(Base):
|
|
_FACTORY_NAME = "Mistral"
|
|
|
|
def __init__(self, key, model_name="mistral-embed", base_url=None):
|
|
from mistralai.client import MistralClient
|
|
|
|
self.client = MistralClient(api_key=key)
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list):
|
|
texts = [truncate(t, 8196) for t in texts]
|
|
batch_size = 16
|
|
ress = []
|
|
token_count = 0
|
|
for i in range(0, len(texts), batch_size):
|
|
res = self.client.embeddings(input=texts[i : i + batch_size], model=self.model_name)
|
|
try:
|
|
ress.extend([d.embedding for d in res.data])
|
|
token_count += self.total_token_count(res)
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
return np.array(ress), token_count
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embeddings(input=[truncate(text, 8196)], model=self.model_name)
|
|
try:
|
|
return np.array(res.data[0].embedding), self.total_token_count(res)
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
|
|
|
|
class BedrockEmbed(Base):
|
|
_FACTORY_NAME = "Bedrock"
|
|
|
|
def __init__(self, key, model_name, **kwargs):
|
|
import boto3
|
|
|
|
self.bedrock_ak = json.loads(key).get("bedrock_ak", "")
|
|
self.bedrock_sk = json.loads(key).get("bedrock_sk", "")
|
|
self.bedrock_region = json.loads(key).get("bedrock_region", "")
|
|
self.model_name = model_name
|
|
|
|
if self.bedrock_ak == "" or self.bedrock_sk == "" or self.bedrock_region == "":
|
|
# Try to create a client using the default credentials (AWS_PROFILE, AWS_DEFAULT_REGION, etc.)
|
|
self.client = boto3.client("bedrock-runtime")
|
|
else:
|
|
self.client = boto3.client(service_name="bedrock-runtime", region_name=self.bedrock_region, aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
|
|
|
|
def encode(self, texts: list):
|
|
texts = [truncate(t, 8196) for t in texts]
|
|
embeddings = []
|
|
token_count = 0
|
|
for text in texts:
|
|
if self.model_name.split(".")[0] == "amazon":
|
|
body = {"inputText": text}
|
|
elif self.model_name.split(".")[0] == "cohere":
|
|
body = {"texts": [text], "input_type": "search_document"}
|
|
|
|
response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
|
|
try:
|
|
model_response = json.loads(response["body"].read())
|
|
embeddings.extend([model_response["embedding"]])
|
|
token_count += num_tokens_from_string(text)
|
|
except Exception as _e:
|
|
log_exception(_e, response)
|
|
|
|
return np.array(embeddings), token_count
|
|
|
|
def encode_queries(self, text):
|
|
embeddings = []
|
|
token_count = num_tokens_from_string(text)
|
|
if self.model_name.split(".")[0] == "amazon":
|
|
body = {"inputText": truncate(text, 8196)}
|
|
elif self.model_name.split(".")[0] == "cohere":
|
|
body = {"texts": [truncate(text, 8196)], "input_type": "search_query"}
|
|
|
|
response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
|
|
try:
|
|
model_response = json.loads(response["body"].read())
|
|
embeddings.extend(model_response["embedding"])
|
|
except Exception as _e:
|
|
log_exception(_e, response)
|
|
|
|
return np.array(embeddings), token_count
|
|
|
|
|
|
class GeminiEmbed(Base):
|
|
_FACTORY_NAME = "Gemini"
|
|
|
|
def __init__(self, key, model_name="models/text-embedding-004", **kwargs):
|
|
self.key = key
|
|
self.model_name = "models/" + model_name
|
|
|
|
def encode(self, texts: list):
|
|
texts = [truncate(t, 2048) for t in texts]
|
|
token_count = sum(num_tokens_from_string(text) for text in texts)
|
|
genai.configure(api_key=self.key)
|
|
batch_size = 16
|
|
ress = []
|
|
for i in range(0, len(texts), batch_size):
|
|
result = genai.embed_content(model=self.model_name, content=texts[i : i + batch_size], task_type="retrieval_document", title="Embedding of single string")
|
|
try:
|
|
ress.extend(result["embedding"])
|
|
except Exception as _e:
|
|
log_exception(_e, result)
|
|
return np.array(ress), token_count
|
|
|
|
def encode_queries(self, text):
|
|
genai.configure(api_key=self.key)
|
|
result = genai.embed_content(model=self.model_name, content=truncate(text, 2048), task_type="retrieval_document", title="Embedding of single string")
|
|
token_count = num_tokens_from_string(text)
|
|
try:
|
|
return np.array(result["embedding"]), token_count
|
|
except Exception as _e:
|
|
log_exception(_e, result)
|
|
|
|
|
|
class NvidiaEmbed(Base):
|
|
_FACTORY_NAME = "NVIDIA"
|
|
|
|
def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings"):
|
|
if not base_url:
|
|
base_url = "https://integrate.api.nvidia.com/v1/embeddings"
|
|
self.api_key = key
|
|
self.base_url = base_url
|
|
self.headers = {
|
|
"accept": "application/json",
|
|
"Content-Type": "application/json",
|
|
"authorization": f"Bearer {self.api_key}",
|
|
}
|
|
self.model_name = model_name
|
|
if model_name == "nvidia/embed-qa-4":
|
|
self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings"
|
|
self.model_name = "NV-Embed-QA"
|
|
if model_name == "snowflake/arctic-embed-l":
|
|
self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings"
|
|
|
|
def encode(self, texts: list):
|
|
batch_size = 16
|
|
ress = []
|
|
token_count = 0
|
|
for i in range(0, len(texts), batch_size):
|
|
payload = {
|
|
"input": texts[i : i + batch_size],
|
|
"input_type": "query",
|
|
"model": self.model_name,
|
|
"encoding_format": "float",
|
|
"truncate": "END",
|
|
}
|
|
response = requests.post(self.base_url, headers=self.headers, json=payload)
|
|
try:
|
|
res = response.json()
|
|
except Exception as _e:
|
|
log_exception(_e, response)
|
|
ress.extend([d["embedding"] for d in res["data"]])
|
|
token_count += self.total_token_count(res)
|
|
return np.array(ress), token_count
|
|
|
|
def encode_queries(self, text):
|
|
embds, cnt = self.encode([text])
|
|
return np.array(embds[0]), cnt
|
|
|
|
|
|
class LmStudioEmbed(LocalAIEmbed):
|
|
_FACTORY_NAME = "LM-Studio"
|
|
|
|
def __init__(self, key, model_name, base_url):
|
|
if not base_url:
|
|
raise ValueError("Local llm url cannot be None")
|
|
base_url = urljoin(base_url, "v1")
|
|
self.client = OpenAI(api_key="lm-studio", base_url=base_url)
|
|
self.model_name = model_name
|
|
|
|
|
|
class OpenAI_APIEmbed(OpenAIEmbed):
|
|
_FACTORY_NAME = ["VLLM", "OpenAI-API-Compatible"]
|
|
|
|
def __init__(self, key, model_name, base_url):
|
|
if not base_url:
|
|
raise ValueError("url cannot be None")
|
|
base_url = urljoin(base_url, "v1")
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name.split("___")[0]
|
|
|
|
|
|
class CoHereEmbed(Base):
|
|
_FACTORY_NAME = "Cohere"
|
|
|
|
def __init__(self, key, model_name, base_url=None):
|
|
from cohere import Client
|
|
|
|
self.client = Client(api_key=key)
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list):
|
|
batch_size = 16
|
|
ress = []
|
|
token_count = 0
|
|
for i in range(0, len(texts), batch_size):
|
|
res = self.client.embed(
|
|
texts=texts[i : i + batch_size],
|
|
model=self.model_name,
|
|
input_type="search_document",
|
|
embedding_types=["float"],
|
|
)
|
|
try:
|
|
ress.extend([d for d in res.embeddings.float])
|
|
token_count += res.meta.billed_units.input_tokens
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
return np.array(ress), token_count
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embed(
|
|
texts=[text],
|
|
model=self.model_name,
|
|
input_type="search_query",
|
|
embedding_types=["float"],
|
|
)
|
|
try:
|
|
return np.array(res.embeddings.float[0]), int(res.meta.billed_units.input_tokens)
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
|
|
|
|
class TogetherAIEmbed(OpenAIEmbed):
|
|
_FACTORY_NAME = "TogetherAI"
|
|
|
|
def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
|
|
if not base_url:
|
|
base_url = "https://api.together.xyz/v1"
|
|
super().__init__(key, model_name, base_url=base_url)
|
|
|
|
|
|
class PerfXCloudEmbed(OpenAIEmbed):
|
|
_FACTORY_NAME = "PerfXCloud"
|
|
|
|
def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
|
|
if not base_url:
|
|
base_url = "https://cloud.perfxlab.cn/v1"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class UpstageEmbed(OpenAIEmbed):
|
|
_FACTORY_NAME = "Upstage"
|
|
|
|
def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
|
|
if not base_url:
|
|
base_url = "https://api.upstage.ai/v1/solar"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class SILICONFLOWEmbed(Base):
|
|
_FACTORY_NAME = "SILICONFLOW"
|
|
|
|
def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1/embeddings"):
|
|
if not base_url:
|
|
base_url = "https://api.siliconflow.cn/v1/embeddings"
|
|
self.headers = {
|
|
"accept": "application/json",
|
|
"content-type": "application/json",
|
|
"authorization": f"Bearer {key}",
|
|
}
|
|
self.base_url = base_url
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list):
|
|
batch_size = 16
|
|
ress = []
|
|
token_count = 0
|
|
for i in range(0, len(texts), batch_size):
|
|
texts_batch = texts[i : i + batch_size]
|
|
payload = {
|
|
"model": self.model_name,
|
|
"input": texts_batch,
|
|
"encoding_format": "float",
|
|
}
|
|
response = requests.post(self.base_url, json=payload, headers=self.headers)
|
|
try:
|
|
res = response.json()
|
|
ress.extend([d["embedding"] for d in res["data"]])
|
|
token_count += self.total_token_count(res)
|
|
except Exception as _e:
|
|
log_exception(_e, response)
|
|
|
|
return np.array(ress), token_count
|
|
|
|
def encode_queries(self, text):
|
|
payload = {
|
|
"model": self.model_name,
|
|
"input": text,
|
|
"encoding_format": "float",
|
|
}
|
|
response = requests.post(self.base_url, json=payload, headers=self.headers)
|
|
try:
|
|
res = response.json()
|
|
return np.array(res["data"][0]["embedding"]), self.total_token_count(res)
|
|
except Exception as _e:
|
|
log_exception(_e, response)
|
|
|
|
|
|
class ReplicateEmbed(Base):
|
|
_FACTORY_NAME = "Replicate"
|
|
|
|
def __init__(self, key, model_name, base_url=None):
|
|
from replicate.client import Client
|
|
|
|
self.model_name = model_name
|
|
self.client = Client(api_token=key)
|
|
|
|
def encode(self, texts: list):
|
|
batch_size = 16
|
|
token_count = sum([num_tokens_from_string(text) for text in texts])
|
|
ress = []
|
|
for i in range(0, len(texts), batch_size):
|
|
res = self.client.run(self.model_name, input={"texts": texts[i : i + batch_size]})
|
|
ress.extend(res)
|
|
return np.array(ress), token_count
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embed(self.model_name, input={"texts": [text]})
|
|
return np.array(res), num_tokens_from_string(text)
|
|
|
|
|
|
class BaiduYiyanEmbed(Base):
|
|
_FACTORY_NAME = "BaiduYiyan"
|
|
|
|
def __init__(self, key, model_name, base_url=None):
|
|
import qianfan
|
|
|
|
key = json.loads(key)
|
|
ak = key.get("yiyan_ak", "")
|
|
sk = key.get("yiyan_sk", "")
|
|
self.client = qianfan.Embedding(ak=ak, sk=sk)
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list, batch_size=16):
|
|
res = self.client.do(model=self.model_name, texts=texts).body
|
|
try:
|
|
return (
|
|
np.array([r["embedding"] for r in res["data"]]),
|
|
self.total_token_count(res),
|
|
)
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.do(model=self.model_name, texts=[text]).body
|
|
try:
|
|
return (
|
|
np.array([r["embedding"] for r in res["data"]]),
|
|
self.total_token_count(res),
|
|
)
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
|
|
|
|
class VoyageEmbed(Base):
|
|
_FACTORY_NAME = "Voyage AI"
|
|
|
|
def __init__(self, key, model_name, base_url=None):
|
|
import voyageai
|
|
|
|
self.client = voyageai.Client(api_key=key)
|
|
self.model_name = model_name
|
|
|
|
def encode(self, texts: list):
|
|
batch_size = 16
|
|
ress = []
|
|
token_count = 0
|
|
for i in range(0, len(texts), batch_size):
|
|
res = self.client.embed(texts=texts[i : i + batch_size], model=self.model_name, input_type="document")
|
|
try:
|
|
ress.extend(res.embeddings)
|
|
token_count += res.total_tokens
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
return np.array(ress), token_count
|
|
|
|
def encode_queries(self, text):
|
|
res = self.client.embed(texts=text, model=self.model_name, input_type="query")
|
|
try:
|
|
return np.array(res.embeddings)[0], res.total_tokens
|
|
except Exception as _e:
|
|
log_exception(_e, res)
|
|
|
|
|
|
class HuggingFaceEmbed(Base):
|
|
_FACTORY_NAME = "HuggingFace"
|
|
|
|
def __init__(self, key, model_name, base_url=None):
|
|
if not model_name:
|
|
raise ValueError("Model name cannot be None")
|
|
self.key = key
|
|
self.model_name = model_name.split("___")[0]
|
|
self.base_url = base_url or "http://127.0.0.1:8080"
|
|
|
|
def encode(self, texts: list):
|
|
embeddings = []
|
|
for text in texts:
|
|
response = requests.post(f"{self.base_url}/embed", json={"inputs": text}, headers={"Content-Type": "application/json"})
|
|
if response.status_code == 200:
|
|
embedding = response.json()
|
|
embeddings.append(embedding[0])
|
|
else:
|
|
raise Exception(f"Error: {response.status_code} - {response.text}")
|
|
return np.array(embeddings), sum([num_tokens_from_string(text) for text in texts])
|
|
|
|
def encode_queries(self, text):
|
|
response = requests.post(f"{self.base_url}/embed", json={"inputs": text}, headers={"Content-Type": "application/json"})
|
|
if response.status_code == 200:
|
|
embedding = response.json()
|
|
return np.array(embedding[0]), num_tokens_from_string(text)
|
|
else:
|
|
raise Exception(f"Error: {response.status_code} - {response.text}")
|
|
|
|
|
|
class VolcEngineEmbed(OpenAIEmbed):
|
|
_FACTORY_NAME = "VolcEngine"
|
|
|
|
def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3"):
|
|
if not base_url:
|
|
base_url = "https://ark.cn-beijing.volces.com/api/v3"
|
|
ark_api_key = json.loads(key).get("ark_api_key", "")
|
|
model_name = json.loads(key).get("ep_id", "") + json.loads(key).get("endpoint_id", "")
|
|
super().__init__(ark_api_key, model_name, base_url)
|
|
|
|
|
|
class GPUStackEmbed(OpenAIEmbed):
|
|
_FACTORY_NAME = "GPUStack"
|
|
|
|
def __init__(self, key, model_name, base_url):
|
|
if not base_url:
|
|
raise ValueError("url cannot be None")
|
|
base_url = urljoin(base_url, "v1")
|
|
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name
|
|
|
|
|
|
class NovitaEmbed(SILICONFLOWEmbed):
|
|
_FACTORY_NAME = "NovitaAI"
|
|
|
|
def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai/embeddings"):
|
|
if not base_url:
|
|
base_url = "https://api.novita.ai/v3/openai/embeddings"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class GiteeEmbed(SILICONFLOWEmbed):
|
|
_FACTORY_NAME = "GiteeAI"
|
|
|
|
def __init__(self, key, model_name, base_url="https://ai.gitee.com/v1/embeddings"):
|
|
if not base_url:
|
|
base_url = "https://ai.gitee.com/v1/embeddings"
|
|
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
class DeepInfraEmbed(OpenAIEmbed):
|
|
_FACTORY_NAME = "DeepInfra"
|
|
|
|
def __init__(self, key, model_name, base_url="https://api.deepinfra.com/v1/openai"):
|
|
if not base_url:
|
|
base_url = "https://api.deepinfra.com/v1/openai"
|
|
super().__init__(key, model_name, base_url)
|