mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-10-31 09:50:00 +00:00 
			
		
		
		
	 56f473b680
			
		
	
	
		56f473b680
		
			
		
	
	
	
	
		
			
			### What problem does this PR solve? Close #3873 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
		
			
				
	
	
		
			1390 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1390 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #
 | |
| #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 | |
| #
 | |
| #  Licensed under the Apache License, Version 2.0 (the "License");
 | |
| #  you may not use this file except in compliance with the License.
 | |
| #  You may obtain a copy of the License at
 | |
| #
 | |
| #      http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| #  Unless required by applicable law or agreed to in writing, software
 | |
| #  distributed under the License is distributed on an "AS IS" BASIS,
 | |
| #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| #  See the License for the specific language governing permissions and
 | |
| #  limitations under the License.
 | |
| #
 | |
| import pathlib
 | |
| import datetime
 | |
| 
 | |
| from api.db.services.dialog_service import keyword_extraction
 | |
| from rag.app.qa import rmPrefix, beAdoc
 | |
| from rag.nlp import rag_tokenizer
 | |
| from api.db import LLMType, ParserType
 | |
| from api.db.services.llm_service import TenantLLMService
 | |
| from api import settings
 | |
| import hashlib
 | |
| import re
 | |
| from api.utils.api_utils import token_required
 | |
| from api.db.db_models import Task
 | |
| from api.db.services.task_service import TaskService, queue_tasks
 | |
| from api.utils.api_utils import server_error_response
 | |
| from api.utils.api_utils import get_result, get_error_data_result
 | |
| from io import BytesIO
 | |
| from flask import request, send_file
 | |
| from api.db import FileSource, TaskStatus, FileType
 | |
| from api.db.db_models import File
 | |
| from api.db.services.document_service import DocumentService
 | |
| from api.db.services.file2document_service import File2DocumentService
 | |
| from api.db.services.file_service import FileService
 | |
| from api.db.services.knowledgebase_service import KnowledgebaseService
 | |
| from api.utils.api_utils import construct_json_result, get_parser_config
 | |
| from rag.nlp import search
 | |
| from rag.utils import rmSpace
 | |
| from rag.utils.storage_factory import STORAGE_IMPL
 | |
| import os
 | |
| 
 | |
| MAXIMUM_OF_UPLOADING_FILES = 256
 | |
| 
 | |
| 
 | |
| @manager.route("/datasets/<dataset_id>/documents", methods=["POST"])
 | |
| @token_required
 | |
| def upload(dataset_id, tenant_id):
 | |
|     """
 | |
|     Upload documents to a dataset.
 | |
|     ---
 | |
|     tags:
 | |
|       - Documents
 | |
|     security:
 | |
|       - ApiKeyAuth: []
 | |
|     parameters:
 | |
|       - in: path
 | |
|         name: dataset_id
 | |
|         type: string
 | |
|         required: true
 | |
|         description: ID of the dataset.
 | |
|       - in: header
 | |
|         name: Authorization
 | |
|         type: string
 | |
|         required: true
 | |
|         description: Bearer token for authentication.
 | |
|       - in: formData
 | |
|         name: file
 | |
|         type: file
 | |
|         required: true
 | |
|         description: Document files to upload.
 | |
|     responses:
 | |
|       200:
 | |
|         description: Successfully uploaded documents.
 | |
|         schema:
 | |
|           type: object
 | |
|           properties:
 | |
|             data:
 | |
|               type: array
 | |
|               items:
 | |
|                 type: object
 | |
|                 properties:
 | |
|                   id:
 | |
|                     type: string
 | |
|                     description: Document ID.
 | |
|                   name:
 | |
|                     type: string
 | |
|                     description: Document name.
 | |
|                   chunk_count:
 | |
|                     type: integer
 | |
|                     description: Number of chunks.
 | |
|                   token_count:
 | |
|                     type: integer
 | |
|                     description: Number of tokens.
 | |
|                   dataset_id:
 | |
|                     type: string
 | |
|                     description: ID of the dataset.
 | |
|                   chunk_method:
 | |
|                     type: string
 | |
|                     description: Chunking method used.
 | |
|                   run:
 | |
|                     type: string
 | |
|                     description: Processing status.
 | |
|     """
 | |
|     if "file" not in request.files:
 | |
|         return get_error_data_result(
 | |
|             message="No file part!", code=settings.RetCode.ARGUMENT_ERROR
 | |
|         )
 | |
|     file_objs = request.files.getlist("file")
 | |
|     for file_obj in file_objs:
 | |
|         if file_obj.filename == "":
 | |
|             return get_result(
 | |
|                 message="No file selected!", code=settings.RetCode.ARGUMENT_ERROR
 | |
|             )
 | |
|     '''
 | |
|     # total size
 | |
|     total_size = 0
 | |
|     for file_obj in file_objs:
 | |
|         file_obj.seek(0, os.SEEK_END)
 | |
|         total_size += file_obj.tell()
 | |
|         file_obj.seek(0)
 | |
|     MAX_TOTAL_FILE_SIZE = 10 * 1024 * 1024
 | |
|     if total_size > MAX_TOTAL_FILE_SIZE:
 | |
|         return get_result(
 | |
|             message=f"Total file size exceeds 10MB limit! ({total_size / (1024 * 1024):.2f} MB)",
 | |
|             code=settings.RetCode.ARGUMENT_ERROR,
 | |
|         )
 | |
|     '''
 | |
|     e, kb = KnowledgebaseService.get_by_id(dataset_id)
 | |
|     if not e:
 | |
|         raise LookupError(f"Can't find the dataset with ID {dataset_id}!")
 | |
|     err, files = FileService.upload_document(kb, file_objs, tenant_id)
 | |
|     if err:
 | |
|         return get_result(message="\n".join(err), code=settings.RetCode.SERVER_ERROR)
 | |
|     # rename key's name
 | |
|     renamed_doc_list = []
 | |
|     for file in files:
 | |
|         doc = file[0]
 | |
|         key_mapping = {
 | |
|             "chunk_num": "chunk_count",
 | |
|             "kb_id": "dataset_id",
 | |
|             "token_num": "token_count",
 | |
|             "parser_id": "chunk_method",
 | |
|         }
 | |
|         renamed_doc = {}
 | |
|         for key, value in doc.items():
 | |
|             new_key = key_mapping.get(key, key)
 | |
|             renamed_doc[new_key] = value
 | |
|         renamed_doc["run"] = "UNSTART"
 | |
|         renamed_doc_list.append(renamed_doc)
 | |
|     return get_result(data=renamed_doc_list)
 | |
| 
 | |
| 
 | |
| @manager.route("/datasets/<dataset_id>/documents/<document_id>", methods=["PUT"])
 | |
| @token_required
 | |
| def update_doc(tenant_id, dataset_id, document_id):
 | |
|     """
 | |
|     Update a document within a dataset.
 | |
|     ---
 | |
|     tags:
 | |
|       - Documents
 | |
|     security:
 | |
|       - ApiKeyAuth: []
 | |
|     parameters:
 | |
|       - in: path
 | |
|         name: dataset_id
 | |
|         type: string
 | |
|         required: true
 | |
|         description: ID of the dataset.
 | |
|       - in: path
 | |
|         name: document_id
 | |
|         type: string
 | |
|         required: true
 | |
|         description: ID of the document to update.
 | |
|       - in: header
 | |
|         name: Authorization
 | |
|         type: string
 | |
|         required: true
 | |
|         description: Bearer token for authentication.
 | |
|       - in: body
 | |
|         name: body
 | |
|         description: Document update parameters.
 | |
|         required: true
 | |
|         schema:
 | |
|           type: object
 | |
|           properties:
 | |
|             name:
 | |
|               type: string
 | |
|               description: New name of the document.
 | |
|             parser_config:
 | |
|               type: object
 | |
|               description: Parser configuration.
 | |
|             chunk_method:
 | |
|               type: string
 | |
|               description: Chunking method.
 | |
|     responses:
 | |
|       200:
 | |
|         description: Document updated successfully.
 | |
|         schema:
 | |
|           type: object
 | |
|     """
 | |
|     req = request.json
 | |
|     if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
 | |
|         return get_error_data_result(message="You don't own the dataset.")
 | |
|     doc = DocumentService.query(kb_id=dataset_id, id=document_id)
 | |
|     if not doc:
 | |
|         return get_error_data_result(message="The dataset doesn't own the document.")
 | |
|     doc = doc[0]
 | |
|     if "chunk_count" in req:
 | |
|         if req["chunk_count"] != doc.chunk_num:
 | |
|             return get_error_data_result(message="Can't change `chunk_count`.")
 | |
|     if "token_count" in req:
 | |
|         if req["token_count"] != doc.token_num:
 | |
|             return get_error_data_result(message="Can't change `token_count`.")
 | |
|     if "progress" in req:
 | |
|         if req["progress"] != doc.progress:
 | |
|             return get_error_data_result(message="Can't change `progress`.")
 | |
| 
 | |
|     if "name" in req and req["name"] != doc.name:
 | |
|         if (
 | |
|                 pathlib.Path(req["name"].lower()).suffix
 | |
|                 != pathlib.Path(doc.name.lower()).suffix
 | |
|         ):
 | |
|             return get_result(
 | |
|                 message="The extension of file can't be changed",
 | |
|                 code=settings.RetCode.ARGUMENT_ERROR,
 | |
|             )
 | |
|         for d in DocumentService.query(name=req["name"], kb_id=doc.kb_id):
 | |
|             if d.name == req["name"]:
 | |
|                 return get_error_data_result(
 | |
|                     message="Duplicated document name in the same dataset."
 | |
|                 )
 | |
|         if not DocumentService.update_by_id(document_id, {"name": req["name"]}):
 | |
|             return get_error_data_result(message="Database error (Document rename)!")
 | |
| 
 | |
|         informs = File2DocumentService.get_by_document_id(document_id)
 | |
|         if informs:
 | |
|             e, file = FileService.get_by_id(informs[0].file_id)
 | |
|             FileService.update_by_id(file.id, {"name": req["name"]})
 | |
|     if "parser_config" in req:
 | |
|         DocumentService.update_parser_config(doc.id, req["parser_config"])
 | |
|     if "chunk_method" in req:
 | |
|         valid_chunk_method = {
 | |
|             "naive",
 | |
|             "manual",
 | |
|             "qa",
 | |
|             "table",
 | |
|             "paper",
 | |
|             "book",
 | |
|             "laws",
 | |
|             "presentation",
 | |
|             "picture",
 | |
|             "one",
 | |
|             "knowledge_graph",
 | |
|             "email",
 | |
|         }
 | |
|         if req.get("chunk_method") not in valid_chunk_method:
 | |
|             return get_error_data_result(
 | |
|                 f"`chunk_method` {req['chunk_method']} doesn't exist"
 | |
|             )
 | |
|         if doc.parser_id.lower() == req["chunk_method"].lower():
 | |
|             return get_result()
 | |
| 
 | |
|         if doc.type == FileType.VISUAL or re.search(r"\.(ppt|pptx|pages)$", doc.name):
 | |
|             return get_error_data_result(message="Not supported yet!")
 | |
| 
 | |
|         e = DocumentService.update_by_id(
 | |
|             doc.id,
 | |
|             {
 | |
|                 "parser_id": req["chunk_method"],
 | |
|                 "progress": 0,
 | |
|                 "progress_msg": "",
 | |
|                 "run": TaskStatus.UNSTART.value,
 | |
|             },
 | |
|         )
 | |
|         if not e:
 | |
|             return get_error_data_result(message="Document not found!")
 | |
|         req["parser_config"] = get_parser_config(
 | |
|             req["chunk_method"], req.get("parser_config")
 | |
|         )
 | |
|         DocumentService.update_parser_config(doc.id, req["parser_config"])
 | |
|         if doc.token_num > 0:
 | |
|             e = DocumentService.increment_chunk_num(
 | |
|                 doc.id,
 | |
|                 doc.kb_id,
 | |
|                 doc.token_num * -1,
 | |
|                 doc.chunk_num * -1,
 | |
|                 doc.process_duation * -1,
 | |
|             )
 | |
|             if not e:
 | |
|                 return get_error_data_result(message="Document not found!")
 | |
|             settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), dataset_id)
 | |
| 
 | |
|     return get_result()
 | |
| 
 | |
| 
 | |
| @manager.route("/datasets/<dataset_id>/documents/<document_id>", methods=["GET"])
 | |
| @token_required
 | |
| def download(tenant_id, dataset_id, document_id):
 | |
|     """
 | |
|     Download a document from a dataset.
 | |
|     ---
 | |
|     tags:
 | |
|       - Documents
 | |
|     security:
 | |
|       - ApiKeyAuth: []
 | |
|     produces:
 | |
|       - application/octet-stream
 | |
|     parameters:
 | |
|       - in: path
 | |
|         name: dataset_id
 | |
|         type: string
 | |
|         required: true
 | |
|         description: ID of the dataset.
 | |
|       - in: path
 | |
|         name: document_id
 | |
|         type: string
 | |
|         required: true
 | |
|         description: ID of the document to download.
 | |
|       - in: header
 | |
|         name: Authorization
 | |
|         type: string
 | |
|         required: true
 | |
|         description: Bearer token for authentication.
 | |
|     responses:
 | |
|       200:
 | |
|         description: Document file stream.
 | |
|         schema:
 | |
|           type: file
 | |
|       400:
 | |
|         description: Error message.
 | |
|         schema:
 | |
|           type: object
 | |
|     """
 | |
|     if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
 | |
|         return get_error_data_result(message=f"You do not own the dataset {dataset_id}.")
 | |
|     doc = DocumentService.query(kb_id=dataset_id, id=document_id)
 | |
|     if not doc:
 | |
|         return get_error_data_result(
 | |
|             message=f"The dataset not own the document {document_id}."
 | |
|         )
 | |
|     # The process of downloading
 | |
|     doc_id, doc_location = File2DocumentService.get_storage_address(
 | |
|         doc_id=document_id
 | |
|     )  # minio address
 | |
|     file_stream = STORAGE_IMPL.get(doc_id, doc_location)
 | |
|     if not file_stream:
 | |
|         return construct_json_result(
 | |
|             message="This file is empty.", code=settings.RetCode.DATA_ERROR
 | |
|         )
 | |
|     file = BytesIO(file_stream)
 | |
|     # Use send_file with a proper filename and MIME type
 | |
|     return send_file(
 | |
|         file,
 | |
|         as_attachment=True,
 | |
|         download_name=doc[0].name,
 | |
|         mimetype="application/octet-stream",  # Set a default MIME type
 | |
|     )
 | |
| 
 | |
| 
 | |
| @manager.route("/datasets/<dataset_id>/documents", methods=["GET"])
 | |
| @token_required
 | |
| def list_docs(dataset_id, tenant_id):
 | |
|     """
 | |
|     List documents in a dataset.
 | |
|     ---
 | |
|     tags:
 | |
|       - Documents
 | |
|     security:
 | |
|       - ApiKeyAuth: []
 | |
|     parameters:
 | |
|       - in: path
 | |
|         name: dataset_id
 | |
|         type: string
 | |
|         required: true
 | |
|         description: ID of the dataset.
 | |
|       - in: query
 | |
|         name: id
 | |
|         type: string
 | |
|         required: false
 | |
|         description: Filter by document ID.
 | |
|       - in: query
 | |
|         name: page
 | |
|         type: integer
 | |
|         required: false
 | |
|         default: 1
 | |
|         description: Page number.
 | |
|       - in: query
 | |
|         name: page_size
 | |
|         type: integer
 | |
|         required: false
 | |
|         default: 30
 | |
|         description: Number of items per page.
 | |
|       - in: query
 | |
|         name: orderby
 | |
|         type: string
 | |
|         required: false
 | |
|         default: "create_time"
 | |
|         description: Field to order by.
 | |
|       - in: query
 | |
|         name: desc
 | |
|         type: boolean
 | |
|         required: false
 | |
|         default: true
 | |
|         description: Order in descending.
 | |
|       - in: header
 | |
|         name: Authorization
 | |
|         type: string
 | |
|         required: true
 | |
|         description: Bearer token for authentication.
 | |
|     responses:
 | |
|       200:
 | |
|         description: List of documents.
 | |
|         schema:
 | |
|           type: object
 | |
|           properties:
 | |
|             total:
 | |
|               type: integer
 | |
|               description: Total number of documents.
 | |
|             docs:
 | |
|               type: array
 | |
|               items:
 | |
|                 type: object
 | |
|                 properties:
 | |
|                   id:
 | |
|                     type: string
 | |
|                     description: Document ID.
 | |
|                   name:
 | |
|                     type: string
 | |
|                     description: Document name.
 | |
|                   chunk_count:
 | |
|                     type: integer
 | |
|                     description: Number of chunks.
 | |
|                   token_count:
 | |
|                     type: integer
 | |
|                     description: Number of tokens.
 | |
|                   dataset_id:
 | |
|                     type: string
 | |
|                     description: ID of the dataset.
 | |
|                   chunk_method:
 | |
|                     type: string
 | |
|                     description: Chunking method used.
 | |
|                   run:
 | |
|                     type: string
 | |
|                     description: Processing status.
 | |
|     """
 | |
|     if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 | |
|         return get_error_data_result(message=f"You don't own the dataset {dataset_id}. ")
 | |
|     id = request.args.get("id")
 | |
|     name = request.args.get("name")
 | |
|     if not DocumentService.query(id=id, kb_id=dataset_id):
 | |
|         return get_error_data_result(message=f"You don't own the document {id}.")
 | |
|     if not DocumentService.query(name=name, kb_id=dataset_id):
 | |
|         return get_error_data_result(message=f"You don't own the document {name}.")
 | |
|     page = int(request.args.get("page", 1))
 | |
|     keywords = request.args.get("keywords", "")
 | |
|     page_size = int(request.args.get("page_size", 30))
 | |
|     orderby = request.args.get("orderby", "create_time")
 | |
|     if request.args.get("desc") == "False":
 | |
|         desc = False
 | |
|     else:
 | |
|         desc = True
 | |
|     docs, tol = DocumentService.get_list(
 | |
|         dataset_id, page, page_size, orderby, desc, keywords, id, name
 | |
|     )
 | |
| 
 | |
|     # rename key's name
 | |
|     renamed_doc_list = []
 | |
|     for doc in docs:
 | |
|         key_mapping = {
 | |
|             "chunk_num": "chunk_count",
 | |
|             "kb_id": "dataset_id",
 | |
|             "token_num": "token_count",
 | |
|             "parser_id": "chunk_method",
 | |
|         }
 | |
|         run_mapping = {
 | |
|             "0": "UNSTART",
 | |
|             "1": "RUNNING",
 | |
|             "2": "CANCEL",
 | |
|             "3": "DONE",
 | |
|             "4": "FAIL",
 | |
|         }
 | |
|         renamed_doc = {}
 | |
|         for key, value in doc.items():
 | |
|             if key == "run":
 | |
|                 renamed_doc["run"] = run_mapping.get(str(value))
 | |
|             new_key = key_mapping.get(key, key)
 | |
|             renamed_doc[new_key] = value
 | |
|             if key == "run":
 | |
|                 renamed_doc["run"] = run_mapping.get(value)
 | |
|         renamed_doc_list.append(renamed_doc)
 | |
|     return get_result(data={"total": tol, "docs": renamed_doc_list})
 | |
| 
 | |
| 
 | |
| @manager.route("/datasets/<dataset_id>/documents", methods=["DELETE"])
 | |
| @token_required
 | |
| def delete(tenant_id, dataset_id):
 | |
|     """
 | |
|     Delete documents from a dataset.
 | |
|     ---
 | |
|     tags:
 | |
|       - Documents
 | |
|     security:
 | |
|       - ApiKeyAuth: []
 | |
|     parameters:
 | |
|       - in: path
 | |
|         name: dataset_id
 | |
|         type: string
 | |
|         required: true
 | |
|         description: ID of the dataset.
 | |
|       - in: body
 | |
|         name: body
 | |
|         description: Document deletion parameters.
 | |
|         required: true
 | |
|         schema:
 | |
|           type: object
 | |
|           properties:
 | |
|             ids:
 | |
|               type: array
 | |
|               items:
 | |
|                 type: string
 | |
|               description: List of document IDs to delete.
 | |
|       - in: header
 | |
|         name: Authorization
 | |
|         type: string
 | |
|         required: true
 | |
|         description: Bearer token for authentication.
 | |
|     responses:
 | |
|       200:
 | |
|         description: Documents deleted successfully.
 | |
|         schema:
 | |
|           type: object
 | |
|     """
 | |
|     if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 | |
|         return get_error_data_result(message=f"You don't own the dataset {dataset_id}. ")
 | |
|     req = request.json
 | |
|     if not req:
 | |
|         doc_ids = None
 | |
|     else:
 | |
|         doc_ids = req.get("ids")
 | |
|     if not doc_ids:
 | |
|         doc_list = []
 | |
|         docs = DocumentService.query(kb_id=dataset_id)
 | |
|         for doc in docs:
 | |
|             doc_list.append(doc.id)
 | |
|     else:
 | |
|         doc_list = doc_ids
 | |
|     root_folder = FileService.get_root_folder(tenant_id)
 | |
|     pf_id = root_folder["id"]
 | |
|     FileService.init_knowledgebase_docs(pf_id, tenant_id)
 | |
|     errors = ""
 | |
|     for doc_id in doc_list:
 | |
|         try:
 | |
|             e, doc = DocumentService.get_by_id(doc_id)
 | |
|             if not e:
 | |
|                 return get_error_data_result(message="Document not found!")
 | |
|             tenant_id = DocumentService.get_tenant_id(doc_id)
 | |
|             if not tenant_id:
 | |
|                 return get_error_data_result(message="Tenant not found!")
 | |
| 
 | |
|             b, n = File2DocumentService.get_storage_address(doc_id=doc_id)
 | |
| 
 | |
|             if not DocumentService.remove_document(doc, tenant_id):
 | |
|                 return get_error_data_result(
 | |
|                     message="Database error (Document removal)!"
 | |
|                 )
 | |
| 
 | |
|             f2d = File2DocumentService.get_by_document_id(doc_id)
 | |
|             FileService.filter_delete(
 | |
|                 [
 | |
|                     File.source_type == FileSource.KNOWLEDGEBASE,
 | |
|                     File.id == f2d[0].file_id,
 | |
|                 ]
 | |
|             )
 | |
|             File2DocumentService.delete_by_document_id(doc_id)
 | |
| 
 | |
|             STORAGE_IMPL.rm(b, n)
 | |
|         except Exception as e:
 | |
|             errors += str(e)
 | |
| 
 | |
|     if errors:
 | |
|         return get_result(message=errors, code=settings.RetCode.SERVER_ERROR)
 | |
| 
 | |
|     return get_result()
 | |
| 
 | |
| 
 | |
| @manager.route("/datasets/<dataset_id>/chunks", methods=["POST"])
 | |
| @token_required
 | |
| def parse(tenant_id, dataset_id):
 | |
|     """
 | |
|     Start parsing documents into chunks.
 | |
|     ---
 | |
|     tags:
 | |
|       - Chunks
 | |
|     security:
 | |
|       - ApiKeyAuth: []
 | |
|     parameters:
 | |
|       - in: path
 | |
|         name: dataset_id
 | |
|         type: string
 | |
|         required: true
 | |
|         description: ID of the dataset.
 | |
|       - in: body
 | |
|         name: body
 | |
|         description: Parsing parameters.
 | |
|         required: true
 | |
|         schema:
 | |
|           type: object
 | |
|           properties:
 | |
|             document_ids:
 | |
|               type: array
 | |
|               items:
 | |
|                 type: string
 | |
|               description: List of document IDs to parse.
 | |
|       - in: header
 | |
|         name: Authorization
 | |
|         type: string
 | |
|         required: true
 | |
|         description: Bearer token for authentication.
 | |
|     responses:
 | |
|       200:
 | |
|         description: Parsing started successfully.
 | |
|         schema:
 | |
|           type: object
 | |
|     """
 | |
|     if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 | |
|         return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
 | |
|     req = request.json
 | |
|     if not req.get("document_ids"):
 | |
|         return get_error_data_result("`document_ids` is required")
 | |
|     for id in req["document_ids"]:
 | |
|         doc = DocumentService.query(id=id, kb_id=dataset_id)
 | |
|         if not doc:
 | |
|             return get_error_data_result(message=f"You don't own the document {id}.")
 | |
|         if doc[0].progress != 0.0:
 | |
|             return get_error_data_result(
 | |
|                 "Can't stop parsing document with progress at 0 or 100"
 | |
|             )
 | |
|         info = {"run": "1", "progress": 0}
 | |
|         info["progress_msg"] = ""
 | |
|         info["chunk_num"] = 0
 | |
|         info["token_num"] = 0
 | |
|         DocumentService.update_by_id(id, info)
 | |
|         settings.docStoreConn.delete({"doc_id": id}, search.index_name(tenant_id), dataset_id)
 | |
|         TaskService.filter_delete([Task.doc_id == id])
 | |
|         e, doc = DocumentService.get_by_id(id)
 | |
|         doc = doc.to_dict()
 | |
|         doc["tenant_id"] = tenant_id
 | |
|         bucket, name = File2DocumentService.get_storage_address(doc_id=doc["id"])
 | |
|         queue_tasks(doc, bucket, name)
 | |
|     return get_result()
 | |
| 
 | |
| 
 | |
| @manager.route("/datasets/<dataset_id>/chunks", methods=["DELETE"])
 | |
| @token_required
 | |
| def stop_parsing(tenant_id, dataset_id):
 | |
|     """
 | |
|     Stop parsing documents into chunks.
 | |
|     ---
 | |
|     tags:
 | |
|       - Chunks
 | |
|     security:
 | |
|       - ApiKeyAuth: []
 | |
|     parameters:
 | |
|       - in: path
 | |
|         name: dataset_id
 | |
|         type: string
 | |
|         required: true
 | |
|         description: ID of the dataset.
 | |
|       - in: body
 | |
|         name: body
 | |
|         description: Stop parsing parameters.
 | |
|         required: true
 | |
|         schema:
 | |
|           type: object
 | |
|           properties:
 | |
|             document_ids:
 | |
|               type: array
 | |
|               items:
 | |
|                 type: string
 | |
|               description: List of document IDs to stop parsing.
 | |
|       - in: header
 | |
|         name: Authorization
 | |
|         type: string
 | |
|         required: true
 | |
|         description: Bearer token for authentication.
 | |
|     responses:
 | |
|       200:
 | |
|         description: Parsing stopped successfully.
 | |
|         schema:
 | |
|           type: object
 | |
|     """
 | |
|     if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 | |
|         return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
 | |
|     req = request.json
 | |
|     if not req.get("document_ids"):
 | |
|         return get_error_data_result("`document_ids` is required")
 | |
|     for id in req["document_ids"]:
 | |
|         doc = DocumentService.query(id=id, kb_id=dataset_id)
 | |
|         if not doc:
 | |
|             return get_error_data_result(message=f"You don't own the document {id}.")
 | |
|         if int(doc[0].progress) == 1 or int(doc[0].progress) == 0:
 | |
|             return get_error_data_result(
 | |
|                 "Can't stop parsing document with progress at 0 or 1"
 | |
|             )
 | |
|         info = {"run": "2", "progress": 0, "chunk_num": 0}
 | |
|         DocumentService.update_by_id(id, info)
 | |
|         settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), dataset_id)
 | |
|     return get_result()
 | |
| 
 | |
| 
 | |
| @manager.route("/datasets/<dataset_id>/documents/<document_id>/chunks", methods=["GET"])
 | |
| @token_required
 | |
| def list_chunks(tenant_id, dataset_id, document_id):
 | |
|     """
 | |
|     List chunks of a document.
 | |
|     ---
 | |
|     tags:
 | |
|       - Chunks
 | |
|     security:
 | |
|       - ApiKeyAuth: []
 | |
|     parameters:
 | |
|       - in: path
 | |
|         name: dataset_id
 | |
|         type: string
 | |
|         required: true
 | |
|         description: ID of the dataset.
 | |
|       - in: path
 | |
|         name: document_id
 | |
|         type: string
 | |
|         required: true
 | |
|         description: ID of the document.
 | |
|       - in: query
 | |
|         name: page
 | |
|         type: integer
 | |
|         required: false
 | |
|         default: 1
 | |
|         description: Page number.
 | |
|       - in: query
 | |
|         name: page_size
 | |
|         type: integer
 | |
|         required: false
 | |
|         default: 30
 | |
|         description: Number of items per page.
 | |
|       - in: header
 | |
|         name: Authorization
 | |
|         type: string
 | |
|         required: true
 | |
|         description: Bearer token for authentication.
 | |
|     responses:
 | |
|       200:
 | |
|         description: List of chunks.
 | |
|         schema:
 | |
|           type: object
 | |
|           properties:
 | |
|             total:
 | |
|               type: integer
 | |
|               description: Total number of chunks.
 | |
|             chunks:
 | |
|               type: array
 | |
|               items:
 | |
|                 type: object
 | |
|                 properties:
 | |
|                   id:
 | |
|                     type: string
 | |
|                     description: Chunk ID.
 | |
|                   content:
 | |
|                     type: string
 | |
|                     description: Chunk content.
 | |
|                   document_id:
 | |
|                     type: string
 | |
|                     description: ID of the document.
 | |
|                   important_keywords:
 | |
|                     type: array
 | |
|                     items:
 | |
|                       type: string
 | |
|                     description: Important keywords.
 | |
|                   image_id:
 | |
|                     type: string
 | |
|                     description: Image ID associated with the chunk.
 | |
|             doc:
 | |
|               type: object
 | |
|               description: Document details.
 | |
|     """
 | |
|     if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 | |
|         return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
 | |
|     doc = DocumentService.query(id=document_id, kb_id=dataset_id)
 | |
|     if not doc:
 | |
|         return get_error_data_result(
 | |
|             message=f"You don't own the document {document_id}."
 | |
|         )
 | |
|     doc = doc[0]
 | |
|     req = request.args
 | |
|     doc_id = document_id
 | |
|     page = int(req.get("page", 1))
 | |
|     size = int(req.get("page_size", 30))
 | |
|     question = req.get("keywords", "")
 | |
|     query = {
 | |
|         "doc_ids": [doc_id],
 | |
|         "page": page,
 | |
|         "size": size,
 | |
|         "question": question,
 | |
|         "sort": True,
 | |
|     }
 | |
|     key_mapping = {
 | |
|         "chunk_num": "chunk_count",
 | |
|         "kb_id": "dataset_id",
 | |
|         "token_num": "token_count",
 | |
|         "parser_id": "chunk_method",
 | |
|     }
 | |
|     run_mapping = {
 | |
|         "0": "UNSTART",
 | |
|         "1": "RUNNING",
 | |
|         "2": "CANCEL",
 | |
|         "3": "DONE",
 | |
|         "4": "FAIL",
 | |
|     }
 | |
|     doc = doc.to_dict()
 | |
|     renamed_doc = {}
 | |
|     for key, value in doc.items():
 | |
|         new_key = key_mapping.get(key, key)
 | |
|         renamed_doc[new_key] = value
 | |
|         if key == "run":
 | |
|             renamed_doc["run"] = run_mapping.get(str(value))
 | |
| 
 | |
|     res = {"total": 0, "chunks": [], "doc": renamed_doc}
 | |
|     origin_chunks = []
 | |
|     if settings.docStoreConn.indexExist(search.index_name(tenant_id), dataset_id):
 | |
|         sres = settings.retrievaler.search(query, search.index_name(tenant_id), [dataset_id], emb_mdl=None,
 | |
|                                            highlight=True)
 | |
|         res["total"] = sres.total
 | |
|         sign = 0
 | |
|         for id in sres.ids:
 | |
|             d = {
 | |
|                 "id": id,
 | |
|                 "content_with_weight": (
 | |
|                     rmSpace(sres.highlight[id])
 | |
|                     if question and id in sres.highlight
 | |
|                     else sres.field[id].get("content_with_weight", "")
 | |
|                 ),
 | |
|                 "doc_id": sres.field[id]["doc_id"],
 | |
|                 "docnm_kwd": sres.field[id]["docnm_kwd"],
 | |
|                 "important_kwd": sres.field[id].get("important_kwd", []),
 | |
|                 "question_kwd": sres.field[id].get("question_kwd", []),
 | |
|                 "img_id": sres.field[id].get("img_id", ""),
 | |
|                 "available_int": sres.field[id].get("available_int", 1),
 | |
|                 "positions": sres.field[id].get("position_int", "").split("\t"),
 | |
|             }
 | |
|             if len(d["positions"]) % 5 == 0:
 | |
|                 poss = []
 | |
|                 for i in range(0, len(d["positions"]), 5):
 | |
|                     poss.append(
 | |
|                         [
 | |
|                             float(d["positions"][i]),
 | |
|                             float(d["positions"][i + 1]),
 | |
|                             float(d["positions"][i + 2]),
 | |
|                             float(d["positions"][i + 3]),
 | |
|                             float(d["positions"][i + 4]),
 | |
|                         ]
 | |
|                     )
 | |
|                 d["positions"] = poss
 | |
| 
 | |
|             origin_chunks.append(d)
 | |
|             if req.get("id"):
 | |
|                 if req.get("id") == id:
 | |
|                     origin_chunks.clear()
 | |
|                     origin_chunks.append(d)
 | |
|                     sign = 1
 | |
|                     break
 | |
|         if req.get("id"):
 | |
|             if sign == 0:
 | |
|                 return get_error_data_result(f"Can't find this chunk {req.get('id')}")
 | |
| 
 | |
|     for chunk in origin_chunks:
 | |
|         key_mapping = {
 | |
|             "id": "id",
 | |
|             "content_with_weight": "content",
 | |
|             "doc_id": "document_id",
 | |
|             "important_kwd": "important_keywords",
 | |
|             "question_kwd": "questions",
 | |
|             "img_id": "image_id",
 | |
|             "available_int": "available",
 | |
|         }
 | |
|         renamed_chunk = {}
 | |
|         for key, value in chunk.items():
 | |
|             new_key = key_mapping.get(key, key)
 | |
|             renamed_chunk[new_key] = value
 | |
|         if renamed_chunk["available"] == 0:
 | |
|             renamed_chunk["available"] = False
 | |
|         if renamed_chunk["available"] == 1:
 | |
|             renamed_chunk["available"] = True
 | |
|         res["chunks"].append(renamed_chunk)
 | |
|     return get_result(data=res)
 | |
| 
 | |
| 
 | |
| @manager.route(
 | |
|     "/datasets/<dataset_id>/documents/<document_id>/chunks", methods=["POST"]
 | |
| )
 | |
| @token_required
 | |
| def add_chunk(tenant_id, dataset_id, document_id):
 | |
|     """
 | |
|     Add a chunk to a document.
 | |
|     ---
 | |
|     tags:
 | |
|       - Chunks
 | |
|     security:
 | |
|       - ApiKeyAuth: []
 | |
|     parameters:
 | |
|       - in: path
 | |
|         name: dataset_id
 | |
|         type: string
 | |
|         required: true
 | |
|         description: ID of the dataset.
 | |
|       - in: path
 | |
|         name: document_id
 | |
|         type: string
 | |
|         required: true
 | |
|         description: ID of the document.
 | |
|       - in: body
 | |
|         name: body
 | |
|         description: Chunk data.
 | |
|         required: true
 | |
|         schema:
 | |
|           type: object
 | |
|           properties:
 | |
|             content:
 | |
|               type: string
 | |
|               required: true
 | |
|               description: Content of the chunk.
 | |
|             important_keywords:
 | |
|               type: array
 | |
|               items:
 | |
|                 type: string
 | |
|               description: Important keywords.
 | |
|       - in: header
 | |
|         name: Authorization
 | |
|         type: string
 | |
|         required: true
 | |
|         description: Bearer token for authentication.
 | |
|     responses:
 | |
|       200:
 | |
|         description: Chunk added successfully.
 | |
|         schema:
 | |
|           type: object
 | |
|           properties:
 | |
|             chunk:
 | |
|               type: object
 | |
|               properties:
 | |
|                 id:
 | |
|                   type: string
 | |
|                   description: Chunk ID.
 | |
|                 content:
 | |
|                   type: string
 | |
|                   description: Chunk content.
 | |
|                 document_id:
 | |
|                   type: string
 | |
|                   description: ID of the document.
 | |
|                 important_keywords:
 | |
|                   type: array
 | |
|                   items:
 | |
|                     type: string
 | |
|                   description: Important keywords.
 | |
|     """
 | |
|     if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 | |
|         return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
 | |
|     doc = DocumentService.query(id=document_id, kb_id=dataset_id)
 | |
|     if not doc:
 | |
|         return get_error_data_result(
 | |
|             message=f"You don't own the document {document_id}."
 | |
|         )
 | |
|     doc = doc[0]
 | |
|     req = request.json
 | |
|     if not req.get("content"):
 | |
|         return get_error_data_result(message="`content` is required")
 | |
|     if "important_keywords" in req:
 | |
|         if type(req["important_keywords"]) != list:
 | |
|             return get_error_data_result(
 | |
|                 "`important_keywords` is required to be a list"
 | |
|             )
 | |
|     if "questions" in req:
 | |
|         if type(req["questions"]) != list:
 | |
|             return get_error_data_result(
 | |
|                 "`questions` is required to be a list"
 | |
|             )
 | |
|     md5 = hashlib.md5()
 | |
|     md5.update((req["content"] + document_id).encode("utf-8"))
 | |
| 
 | |
|     chunk_id = md5.hexdigest()
 | |
|     d = {
 | |
|         "id": chunk_id,
 | |
|         "content_ltks": rag_tokenizer.tokenize(req["content"]),
 | |
|         "content_with_weight": req["content"],
 | |
|     }
 | |
|     d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
 | |
|     d["important_kwd"] = req.get("important_keywords", [])
 | |
|     d["important_tks"] = rag_tokenizer.tokenize(
 | |
|         " ".join(req.get("important_keywords", []))
 | |
|     )
 | |
|     d["question_kwd"] = req.get("questions", [])
 | |
|     d["question_tks"] = rag_tokenizer.tokenize(
 | |
|         "\n".join(req.get("questions", []))
 | |
|     )
 | |
|     d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
 | |
|     d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
 | |
|     d["kb_id"] = dataset_id
 | |
|     d["docnm_kwd"] = doc.name
 | |
|     d["doc_id"] = document_id
 | |
|     embd_id = DocumentService.get_embd_id(document_id)
 | |
|     embd_mdl = TenantLLMService.model_instance(
 | |
|         tenant_id, LLMType.EMBEDDING.value, embd_id
 | |
|     )
 | |
|     v, c = embd_mdl.encode([doc.name, req["content"] if not d["question_kwd"] else "\n".join(d["question_kwd"])])
 | |
|     v = 0.1 * v[0] + 0.9 * v[1]
 | |
|     d["q_%d_vec" % len(v)] = v.tolist()
 | |
|     settings.docStoreConn.insert([d], search.index_name(tenant_id), dataset_id)
 | |
| 
 | |
|     DocumentService.increment_chunk_num(doc.id, doc.kb_id, c, 1, 0)
 | |
|     # rename keys
 | |
|     key_mapping = {
 | |
|         "id": "id",
 | |
|         "content_with_weight": "content",
 | |
|         "doc_id": "document_id",
 | |
|         "important_kwd": "important_keywords",
 | |
|         "question_kwd": "questions",
 | |
|         "kb_id": "dataset_id",
 | |
|         "create_timestamp_flt": "create_timestamp",
 | |
|         "create_time": "create_time",
 | |
|         "document_keyword": "document",
 | |
|     }
 | |
|     renamed_chunk = {}
 | |
|     for key, value in d.items():
 | |
|         if key in key_mapping:
 | |
|             new_key = key_mapping.get(key, key)
 | |
|             renamed_chunk[new_key] = value
 | |
|     return get_result(data={"chunk": renamed_chunk})
 | |
|     # return get_result(data={"chunk_id": chunk_id})
 | |
| 
 | |
| 
 | |
| @manager.route(
 | |
|     "datasets/<dataset_id>/documents/<document_id>/chunks", methods=["DELETE"]
 | |
| )
 | |
| @token_required
 | |
| def rm_chunk(tenant_id, dataset_id, document_id):
 | |
|     """
 | |
|     Remove chunks from a document.
 | |
|     ---
 | |
|     tags:
 | |
|       - Chunks
 | |
|     security:
 | |
|       - ApiKeyAuth: []
 | |
|     parameters:
 | |
|       - in: path
 | |
|         name: dataset_id
 | |
|         type: string
 | |
|         required: true
 | |
|         description: ID of the dataset.
 | |
|       - in: path
 | |
|         name: document_id
 | |
|         type: string
 | |
|         required: true
 | |
|         description: ID of the document.
 | |
|       - in: body
 | |
|         name: body
 | |
|         description: Chunk removal parameters.
 | |
|         required: true
 | |
|         schema:
 | |
|           type: object
 | |
|           properties:
 | |
|             chunk_ids:
 | |
|               type: array
 | |
|               items:
 | |
|                 type: string
 | |
|               description: List of chunk IDs to remove.
 | |
|       - in: header
 | |
|         name: Authorization
 | |
|         type: string
 | |
|         required: true
 | |
|         description: Bearer token for authentication.
 | |
|     responses:
 | |
|       200:
 | |
|         description: Chunks removed successfully.
 | |
|         schema:
 | |
|           type: object
 | |
|     """
 | |
|     if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 | |
|         return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
 | |
|     req = request.json
 | |
|     condition = {"doc_id": document_id}
 | |
|     if "chunk_ids" in req:
 | |
|         condition["id"] = req["chunk_ids"]
 | |
|     chunk_number = settings.docStoreConn.delete(condition, search.index_name(tenant_id), dataset_id)
 | |
|     if chunk_number != 0:
 | |
|         DocumentService.decrement_chunk_num(document_id, dataset_id, 1, chunk_number, 0)
 | |
|     if "chunk_ids" in req and chunk_number != len(req["chunk_ids"]):
 | |
|         return get_error_data_result(message=f"rm_chunk deleted chunks {chunk_number}, expect {len(req['chunk_ids'])}")
 | |
|     return get_result(message=f"deleted {chunk_number} chunks")
 | |
| 
 | |
| 
 | |
| @manager.route(
 | |
|     "/datasets/<dataset_id>/documents/<document_id>/chunks/<chunk_id>", methods=["PUT"]
 | |
| )
 | |
| @token_required
 | |
| def update_chunk(tenant_id, dataset_id, document_id, chunk_id):
 | |
|     """
 | |
|     Update a chunk within a document.
 | |
|     ---
 | |
|     tags:
 | |
|       - Chunks
 | |
|     security:
 | |
|       - ApiKeyAuth: []
 | |
|     parameters:
 | |
|       - in: path
 | |
|         name: dataset_id
 | |
|         type: string
 | |
|         required: true
 | |
|         description: ID of the dataset.
 | |
|       - in: path
 | |
|         name: document_id
 | |
|         type: string
 | |
|         required: true
 | |
|         description: ID of the document.
 | |
|       - in: path
 | |
|         name: chunk_id
 | |
|         type: string
 | |
|         required: true
 | |
|         description: ID of the chunk to update.
 | |
|       - in: body
 | |
|         name: body
 | |
|         description: Chunk update parameters.
 | |
|         required: true
 | |
|         schema:
 | |
|           type: object
 | |
|           properties:
 | |
|             content:
 | |
|               type: string
 | |
|               description: Updated content of the chunk.
 | |
|             important_keywords:
 | |
|               type: array
 | |
|               items:
 | |
|                 type: string
 | |
|               description: Updated important keywords.
 | |
|             available:
 | |
|               type: boolean
 | |
|               description: Availability status of the chunk.
 | |
|       - in: header
 | |
|         name: Authorization
 | |
|         type: string
 | |
|         required: true
 | |
|         description: Bearer token for authentication.
 | |
|     responses:
 | |
|       200:
 | |
|         description: Chunk updated successfully.
 | |
|         schema:
 | |
|           type: object
 | |
|     """
 | |
|     chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant_id), [dataset_id])
 | |
|     if chunk is None:
 | |
|         return get_error_data_result(f"Can't find this chunk {chunk_id}")
 | |
|     if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 | |
|         return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
 | |
|     doc = DocumentService.query(id=document_id, kb_id=dataset_id)
 | |
|     if not doc:
 | |
|         return get_error_data_result(
 | |
|             message=f"You don't own the document {document_id}."
 | |
|         )
 | |
|     doc = doc[0]
 | |
|     req = request.json
 | |
|     if "content" in req:
 | |
|         content = req["content"]
 | |
|     else:
 | |
|         content = chunk.get("content_with_weight", "")
 | |
|     d = {"id": chunk_id, "content_with_weight": content}
 | |
|     d["content_ltks"] = rag_tokenizer.tokenize(d["content_with_weight"])
 | |
|     d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
 | |
|     if "important_keywords" in req:
 | |
|         if not isinstance(req["important_keywords"], list):
 | |
|             return get_error_data_result("`important_keywords` should be a list")
 | |
|         d["important_kwd"] = req.get("important_keywords", [])
 | |
|         d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_keywords"]))
 | |
|     if "questions" in req:
 | |
|         if not isinstance(req["questions"], list):
 | |
|             return get_error_data_result("`questions` should be a list")
 | |
|         d["question_kwd"] = req.get("questions")
 | |
|         d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["questions"]))
 | |
|     if "available" in req:
 | |
|         d["available_int"] = int(req["available"])
 | |
|     embd_id = DocumentService.get_embd_id(document_id)
 | |
|     embd_mdl = TenantLLMService.model_instance(
 | |
|         tenant_id, LLMType.EMBEDDING.value, embd_id
 | |
|     )
 | |
|     if doc.parser_id == ParserType.QA:
 | |
|         arr = [t for t in re.split(r"[\n\t]", d["content_with_weight"]) if len(t) > 1]
 | |
|         if len(arr) != 2:
 | |
|             return get_error_data_result(
 | |
|                 message="Q&A must be separated by TAB/ENTER key."
 | |
|             )
 | |
|         q, a = rmPrefix(arr[0]), rmPrefix(arr[1])
 | |
|         d = beAdoc(
 | |
|             d, arr[0], arr[1], not any([rag_tokenizer.is_chinese(t) for t in q + a])
 | |
|         )
 | |
| 
 | |
|     v, c = embd_mdl.encode([doc.name, d["content_with_weight"] if not d.get("question_kwd") else "\n".join(d["question_kwd"])])
 | |
|     v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
 | |
|     d["q_%d_vec" % len(v)] = v.tolist()
 | |
|     settings.docStoreConn.update({"id": chunk_id}, d, search.index_name(tenant_id), dataset_id)
 | |
|     return get_result()
 | |
| 
 | |
| 
 | |
| @manager.route("/retrieval", methods=["POST"])
 | |
| @token_required
 | |
| def retrieval_test(tenant_id):
 | |
|     """
 | |
|     Retrieve chunks based on a query.
 | |
|     ---
 | |
|     tags:
 | |
|       - Retrieval
 | |
|     security:
 | |
|       - ApiKeyAuth: []
 | |
|     parameters:
 | |
|       - in: body
 | |
|         name: body
 | |
|         description: Retrieval parameters.
 | |
|         required: true
 | |
|         schema:
 | |
|           type: object
 | |
|           properties:
 | |
|             dataset_ids:
 | |
|               type: array
 | |
|               items:
 | |
|                 type: string
 | |
|               required: true
 | |
|               description: List of dataset IDs to search in.
 | |
|             question:
 | |
|               type: string
 | |
|               required: true
 | |
|               description: Query string.
 | |
|             document_ids:
 | |
|               type: array
 | |
|               items:
 | |
|                 type: string
 | |
|               description: List of document IDs to filter.
 | |
|             similarity_threshold:
 | |
|               type: number
 | |
|               format: float
 | |
|               description: Similarity threshold.
 | |
|             vector_similarity_weight:
 | |
|               type: number
 | |
|               format: float
 | |
|               description: Vector similarity weight.
 | |
|             top_k:
 | |
|               type: integer
 | |
|               description: Maximum number of chunks to return.
 | |
|             highlight:
 | |
|               type: boolean
 | |
|               description: Whether to highlight matched content.
 | |
|       - in: header
 | |
|         name: Authorization
 | |
|         type: string
 | |
|         required: true
 | |
|         description: Bearer token for authentication.
 | |
|     responses:
 | |
|       200:
 | |
|         description: Retrieval results.
 | |
|         schema:
 | |
|           type: object
 | |
|           properties:
 | |
|             chunks:
 | |
|               type: array
 | |
|               items:
 | |
|                 type: object
 | |
|                 properties:
 | |
|                   id:
 | |
|                     type: string
 | |
|                     description: Chunk ID.
 | |
|                   content:
 | |
|                     type: string
 | |
|                     description: Chunk content.
 | |
|                   document_id:
 | |
|                     type: string
 | |
|                     description: ID of the document.
 | |
|                   dataset_id:
 | |
|                     type: string
 | |
|                     description: ID of the dataset.
 | |
|                   similarity:
 | |
|                     type: number
 | |
|                     format: float
 | |
|                     description: Similarity score.
 | |
|     """
 | |
|     req = request.json
 | |
|     if not req.get("dataset_ids"):
 | |
|         return get_error_data_result("`dataset_ids` is required.")
 | |
|     kb_ids = req["dataset_ids"]
 | |
|     if not isinstance(kb_ids, list):
 | |
|         return get_error_data_result("`dataset_ids` should be a list")
 | |
|     kbs = KnowledgebaseService.get_by_ids(kb_ids)
 | |
|     for id in kb_ids:
 | |
|         if not KnowledgebaseService.accessible(kb_id=id, user_id=tenant_id):
 | |
|             return get_error_data_result(f"You don't own the dataset {id}.")
 | |
|     embd_nms = list(set([kb.embd_id for kb in kbs]))
 | |
|     if len(embd_nms) != 1:
 | |
|         return get_result(
 | |
|             message='Datasets use different embedding models."',
 | |
|             code=settings.RetCode.AUTHENTICATION_ERROR,
 | |
|         )
 | |
|     if "question" not in req:
 | |
|         return get_error_data_result("`question` is required.")
 | |
|     page = int(req.get("page", 1))
 | |
|     size = int(req.get("page_size", 30))
 | |
|     question = req["question"]
 | |
|     doc_ids = req.get("document_ids", [])
 | |
|     if not isinstance(doc_ids, list):
 | |
|         return get_error_data_result("`documents` should be a list")
 | |
|     doc_ids_list = KnowledgebaseService.list_documents_by_ids(kb_ids)
 | |
|     for doc_id in doc_ids:
 | |
|         if doc_id not in doc_ids_list:
 | |
|             return get_error_data_result(
 | |
|                 f"The datasets don't own the document {doc_id}"
 | |
|             )
 | |
|     similarity_threshold = float(req.get("similarity_threshold", 0.2))
 | |
|     vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
 | |
|     top = int(req.get("top_k", 1024))
 | |
|     if req.get("highlight") == "False" or req.get("highlight") == "false":
 | |
|         highlight = False
 | |
|     else:
 | |
|         highlight = True
 | |
|     try:
 | |
|         e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
 | |
|         if not e:
 | |
|             return get_error_data_result(message="Dataset not found!")
 | |
|         embd_mdl = TenantLLMService.model_instance(
 | |
|             kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id
 | |
|         )
 | |
| 
 | |
|         rerank_mdl = None
 | |
|         if req.get("rerank_id"):
 | |
|             rerank_mdl = TenantLLMService.model_instance(
 | |
|                 kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"]
 | |
|             )
 | |
| 
 | |
|         if req.get("keyword", False):
 | |
|             chat_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.CHAT)
 | |
|             question += keyword_extraction(chat_mdl, question)
 | |
| 
 | |
|         retr = settings.retrievaler if kb.parser_id != ParserType.KG else settings.kg_retrievaler
 | |
|         ranks = retr.retrieval(
 | |
|             question,
 | |
|             embd_mdl,
 | |
|             kb.tenant_id,
 | |
|             kb_ids,
 | |
|             page,
 | |
|             size,
 | |
|             similarity_threshold,
 | |
|             vector_similarity_weight,
 | |
|             top,
 | |
|             doc_ids,
 | |
|             rerank_mdl=rerank_mdl,
 | |
|             highlight=highlight,
 | |
|         )
 | |
|         for c in ranks["chunks"]:
 | |
|             c.pop("vector", None)
 | |
| 
 | |
|         ##rename keys
 | |
|         renamed_chunks = []
 | |
|         for chunk in ranks["chunks"]:
 | |
|             key_mapping = {
 | |
|                 "chunk_id": "id",
 | |
|                 "content_with_weight": "content",
 | |
|                 "doc_id": "document_id",
 | |
|                 "important_kwd": "important_keywords",
 | |
|                 "question_kwd": "questions",
 | |
|                 "docnm_kwd": "document_keyword",
 | |
|             }
 | |
|             rename_chunk = {}
 | |
|             for key, value in chunk.items():
 | |
|                 new_key = key_mapping.get(key, key)
 | |
|                 rename_chunk[new_key] = value
 | |
|             renamed_chunks.append(rename_chunk)
 | |
|         ranks["chunks"] = renamed_chunks
 | |
|         return get_result(data=ranks)
 | |
|     except Exception as e:
 | |
|         if str(e).find("not_found") > 0:
 | |
|             return get_result(
 | |
|                 message="No chunk found! Check the chunk status please!",
 | |
|                 code=settings.RetCode.DATA_ERROR,
 | |
|             )
 | |
|         return server_error_response(e)
 |