ragflow/api/utils/api_utils.py
Saurabh Lingam 4179ecd469
Fix JSON serialization error for ModelMetaclass objects (#9812)
- Add robust serialize_for_json() function to handle non-serializable
objects
- Update server_error_response() to safely serialize exception data
- Update get_json_result() with fallback error handling
- Handles ModelMetaclass, functions, and other problematic objects
- Maintains proper JSON response format instead of server crashes

Fixes #9797

### What problem does this PR solve?
Currently, error responses and certain result objects may include types
that are not JSON serializable (e.g., ModelMetaclass, functions). This
causes server crashes instead of returning valid JSON responses.

This PR introduces a robust serializer that converts unsupported types
into string representations, ensuring the server always returns a valid
JSON response.
### Type of change

- [] Bug Fix (non-breaking change which fixes an issue)
2025-09-02 16:17:34 +08:00

774 lines
27 KiB
Python

#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import asyncio
import functools
import json
import logging
import os
import queue
import random
import threading
import time
from base64 import b64encode
from copy import deepcopy
from functools import wraps
from hmac import HMAC
from io import BytesIO
from typing import Any, Callable, Coroutine, Optional, Type, Union
from urllib.parse import quote, urlencode
from uuid import uuid1
import requests
import trio
from flask import (
Response,
jsonify,
make_response,
send_file,
)
from flask import (
request as flask_request,
)
from itsdangerous import URLSafeTimedSerializer
from peewee import OperationalError
from werkzeug.http import HTTP_STATUS_CODES
from api import settings
from api.constants import REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC
from api.db.db_models import APIToken
from api.db.services.llm_service import LLMService
from api.db.services.tenant_llm_service import TenantLLMService
from api.utils import CustomJSONEncoder, get_uuid, json_dumps
from rag.utils.mcp_tool_call_conn import MCPToolCallSession, close_multiple_mcp_toolcall_sessions
requests.models.complexjson.dumps = functools.partial(json.dumps, cls=CustomJSONEncoder)
def serialize_for_json(obj):
"""
Recursively serialize objects to make them JSON serializable.
Handles ModelMetaclass and other non-serializable objects.
"""
if hasattr(obj, '__dict__'):
# For objects with __dict__, try to serialize their attributes
try:
return {key: serialize_for_json(value) for key, value in obj.__dict__.items()
if not key.startswith('_')}
except (AttributeError, TypeError):
return str(obj)
elif hasattr(obj, '__name__'):
# For classes and metaclasses, return their name
return f"<{obj.__module__}.{obj.__name__}>" if hasattr(obj, '__module__') else f"<{obj.__name__}>"
elif isinstance(obj, (list, tuple)):
return [serialize_for_json(item) for item in obj]
elif isinstance(obj, dict):
return {key: serialize_for_json(value) for key, value in obj.items()}
elif isinstance(obj, (str, int, float, bool)) or obj is None:
return obj
else:
# Fallback: convert to string representation
return str(obj)
def request(**kwargs):
sess = requests.Session()
stream = kwargs.pop("stream", sess.stream)
timeout = kwargs.pop("timeout", None)
kwargs["headers"] = {k.replace("_", "-").upper(): v for k, v in kwargs.get("headers", {}).items()}
prepped = requests.Request(**kwargs).prepare()
if settings.CLIENT_AUTHENTICATION and settings.HTTP_APP_KEY and settings.SECRET_KEY:
timestamp = str(round(time() * 1000))
nonce = str(uuid1())
signature = b64encode(
HMAC(
settings.SECRET_KEY.encode("ascii"),
b"\n".join(
[
timestamp.encode("ascii"),
nonce.encode("ascii"),
settings.HTTP_APP_KEY.encode("ascii"),
prepped.path_url.encode("ascii"),
prepped.body if kwargs.get("json") else b"",
urlencode(sorted(kwargs["data"].items()), quote_via=quote, safe="-._~").encode("ascii") if kwargs.get("data") and isinstance(kwargs["data"], dict) else b"",
]
),
"sha1",
).digest()
).decode("ascii")
prepped.headers.update(
{
"TIMESTAMP": timestamp,
"NONCE": nonce,
"APP-KEY": settings.HTTP_APP_KEY,
"SIGNATURE": signature,
}
)
return sess.send(prepped, stream=stream, timeout=timeout)
def get_exponential_backoff_interval(retries, full_jitter=False):
"""Calculate the exponential backoff wait time."""
# Will be zero if factor equals 0
countdown = min(REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC * (2**retries))
# Full jitter according to
# https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
if full_jitter:
countdown = random.randrange(countdown + 1)
# Adjust according to maximum wait time and account for negative values.
return max(0, countdown)
def get_data_error_result(code=settings.RetCode.DATA_ERROR, message="Sorry! Data missing!"):
logging.exception(Exception(message))
result_dict = {"code": code, "message": message}
response = {}
for key, value in result_dict.items():
if value is None and key != "code":
continue
else:
response[key] = value
return jsonify(response)
def server_error_response(e):
logging.exception(e)
try:
if e.code == 401:
return get_json_result(code=401, message=repr(e))
except BaseException:
pass
if len(e.args) > 1:
try:
serialized_data = serialize_for_json(e.args[1])
return get_json_result(code= settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=serialized_data)
except Exception:
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=None)
if repr(e).find("index_not_found_exception") >= 0:
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message="No chunk found, please upload file and parse it.")
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e))
def error_response(response_code, message=None):
if message is None:
message = HTTP_STATUS_CODES.get(response_code, "Unknown Error")
return Response(
json.dumps(
{
"message": message,
"code": response_code,
}
),
status=response_code,
mimetype="application/json",
)
def validate_request(*args, **kwargs):
def wrapper(func):
@wraps(func)
def decorated_function(*_args, **_kwargs):
input_arguments = flask_request.json or flask_request.form.to_dict()
no_arguments = []
error_arguments = []
for arg in args:
if arg not in input_arguments:
no_arguments.append(arg)
for k, v in kwargs.items():
config_value = input_arguments.get(k, None)
if config_value is None:
no_arguments.append(k)
elif isinstance(v, (tuple, list)):
if config_value not in v:
error_arguments.append((k, set(v)))
elif config_value != v:
error_arguments.append((k, v))
if no_arguments or error_arguments:
error_string = ""
if no_arguments:
error_string += "required argument are missing: {}; ".format(",".join(no_arguments))
if error_arguments:
error_string += "required argument values: {}".format(",".join(["{}={}".format(a[0], a[1]) for a in error_arguments]))
return get_json_result(code=settings.RetCode.ARGUMENT_ERROR, message=error_string)
return func(*_args, **_kwargs)
return decorated_function
return wrapper
def not_allowed_parameters(*params):
def decorator(f):
def wrapper(*args, **kwargs):
input_arguments = flask_request.json or flask_request.form.to_dict()
for param in params:
if param in input_arguments:
return get_json_result(code=settings.RetCode.ARGUMENT_ERROR, message=f"Parameter {param} isn't allowed")
return f(*args, **kwargs)
return wrapper
return decorator
def is_localhost(ip):
return ip in {"127.0.0.1", "::1", "[::1]", "localhost"}
def send_file_in_mem(data, filename):
if not isinstance(data, (str, bytes)):
data = json_dumps(data)
if isinstance(data, str):
data = data.encode("utf-8")
f = BytesIO()
f.write(data)
f.seek(0)
return send_file(f, as_attachment=True, attachment_filename=filename)
def get_json_result(code=settings.RetCode.SUCCESS, message="success", data=None):
response = {"code": code, "message": message, "data": data}
return jsonify(response)
def apikey_required(func):
@wraps(func)
def decorated_function(*args, **kwargs):
token = flask_request.headers.get("Authorization").split()[1]
objs = APIToken.query(token=token)
if not objs:
return build_error_result(message="API-KEY is invalid!", code=settings.RetCode.FORBIDDEN)
kwargs["tenant_id"] = objs[0].tenant_id
return func(*args, **kwargs)
return decorated_function
def build_error_result(code=settings.RetCode.FORBIDDEN, message="success"):
response = {"code": code, "message": message}
response = jsonify(response)
response.status_code = code
return response
def construct_response(code=settings.RetCode.SUCCESS, message="success", data=None, auth=None):
result_dict = {"code": code, "message": message, "data": data}
response_dict = {}
for key, value in result_dict.items():
if value is None and key != "code":
continue
else:
response_dict[key] = value
response = make_response(jsonify(response_dict))
if auth:
response.headers["Authorization"] = auth
response.headers["Access-Control-Allow-Origin"] = "*"
response.headers["Access-Control-Allow-Method"] = "*"
response.headers["Access-Control-Allow-Headers"] = "*"
response.headers["Access-Control-Allow-Headers"] = "*"
response.headers["Access-Control-Expose-Headers"] = "Authorization"
return response
def construct_result(code=settings.RetCode.DATA_ERROR, message="data is missing"):
result_dict = {"code": code, "message": message}
response = {}
for key, value in result_dict.items():
if value is None and key != "code":
continue
else:
response[key] = value
return jsonify(response)
def construct_json_result(code=settings.RetCode.SUCCESS, message="success", data=None):
if data is None:
return jsonify({"code": code, "message": message})
else:
return jsonify({"code": code, "message": message, "data": data})
def construct_error_response(e):
logging.exception(e)
try:
if e.code == 401:
return construct_json_result(code=settings.RetCode.UNAUTHORIZED, message=repr(e))
except BaseException:
pass
if len(e.args) > 1:
return construct_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=e.args[1])
return construct_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e))
def token_required(func):
@wraps(func)
def decorated_function(*args, **kwargs):
authorization_str = flask_request.headers.get("Authorization")
if not authorization_str:
return get_json_result(data=False, message="`Authorization` can't be empty")
authorization_list = authorization_str.split()
if len(authorization_list) < 2:
return get_json_result(data=False, message="Please check your authorization format.")
token = authorization_list[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(data=False, message="Authentication error: API key is invalid!", code=settings.RetCode.AUTHENTICATION_ERROR)
kwargs["tenant_id"] = objs[0].tenant_id
return func(*args, **kwargs)
return decorated_function
def get_result(code=settings.RetCode.SUCCESS, message="", data=None):
if code == 0:
if data is not None:
response = {"code": code, "data": data}
else:
response = {"code": code}
else:
response = {"code": code, "message": message}
return jsonify(response)
def get_error_data_result(
message="Sorry! Data missing!",
code=settings.RetCode.DATA_ERROR,
):
result_dict = {"code": code, "message": message}
response = {}
for key, value in result_dict.items():
if value is None and key != "code":
continue
else:
response[key] = value
return jsonify(response)
def get_error_argument_result(message="Invalid arguments"):
return get_result(code=settings.RetCode.ARGUMENT_ERROR, message=message)
def get_error_permission_result(message="Permission error"):
return get_result(code=settings.RetCode.PERMISSION_ERROR, message=message)
def get_error_operating_result(message="Operating error"):
return get_result(code=settings.RetCode.OPERATING_ERROR, message=message)
def generate_confirmation_token(tenant_id):
serializer = URLSafeTimedSerializer(tenant_id)
return "ragflow-" + serializer.dumps(get_uuid(), salt=tenant_id)[2:34]
def get_parser_config(chunk_method, parser_config):
if not chunk_method:
chunk_method = "naive"
# Define default configurations for each chunking method
key_mapping = {
"naive": {"chunk_token_num": 512, "delimiter": r"\n", "html4excel": False, "layout_recognize": "DeepDOC", "raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},
"qa": {"raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},
"tag": None,
"resume": None,
"manual": {"raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},
"table": None,
"paper": {"raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},
"book": {"raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},
"laws": {"raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},
"presentation": {"raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},
"one": None,
"knowledge_graph": {
"chunk_token_num": 8192,
"delimiter": r"\n",
"entity_types": ["organization", "person", "location", "event", "time"],
"raptor": {"use_raptor": False},
"graphrag": {"use_graphrag": False},
},
"email": None,
"picture": None,
}
default_config = key_mapping[chunk_method]
# If no parser_config provided, return default
if not parser_config:
return default_config
# If parser_config is provided, merge with defaults to ensure required fields exist
if default_config is None:
return parser_config
# Ensure raptor and graphrag fields have default values if not provided
merged_config = deep_merge(default_config, parser_config)
return merged_config
def get_data_openai(
id=None,
created=None,
model=None,
prompt_tokens=0,
completion_tokens=0,
content=None,
finish_reason=None,
object="chat.completion",
param=None,
stream=False
):
total_tokens = prompt_tokens + completion_tokens
if stream:
return {
"id": f"{id}",
"object": "chat.completion.chunk",
"model": model,
"choices": [{
"delta": {"content": content},
"finish_reason": finish_reason,
"index": 0,
}],
}
return {
"id": f"{id}",
"object": object,
"created": int(time.time()) if created else None,
"model": model,
"param": param,
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": total_tokens,
"completion_tokens_details": {
"reasoning_tokens": 0,
"accepted_prediction_tokens": 0,
"rejected_prediction_tokens": 0,
},
},
"choices": [{
"message": {
"role": "assistant",
"content": content
},
"logprobs": None,
"finish_reason": finish_reason,
"index": 0,
}],
}
def check_duplicate_ids(ids, id_type="item"):
"""
Check for duplicate IDs in a list and return unique IDs and error messages.
Args:
ids (list): List of IDs to check for duplicates
id_type (str): Type of ID for error messages (e.g., 'document', 'dataset', 'chunk')
Returns:
tuple: (unique_ids, error_messages)
- unique_ids (list): List of unique IDs
- error_messages (list): List of error messages for duplicate IDs
"""
id_count = {}
duplicate_messages = []
# Count occurrences of each ID
for id_value in ids:
id_count[id_value] = id_count.get(id_value, 0) + 1
# Check for duplicates
for id_value, count in id_count.items():
if count > 1:
duplicate_messages.append(f"Duplicate {id_type} ids: {id_value}")
# Return unique IDs and error messages
return list(set(ids)), duplicate_messages
def verify_embedding_availability(embd_id: str, tenant_id: str) -> tuple[bool, Response | None]:
"""
Verifies availability of an embedding model for a specific tenant.
Performs comprehensive verification through:
1. Identifier Parsing: Decomposes embd_id into name and factory components
2. System Verification: Checks model registration in LLMService
3. Tenant Authorization: Validates tenant-specific model assignments
4. Built-in Model Check: Confirms inclusion in predefined system models
Args:
embd_id (str): Unique identifier for the embedding model in format "model_name@factory"
tenant_id (str): Tenant identifier for access control
Returns:
tuple[bool, Response | None]:
- First element (bool):
- True: Model is available and authorized
- False: Validation failed
- Second element contains:
- None on success
- Error detail dict on failure
Raises:
ValueError: When model identifier format is invalid
OperationalError: When database connection fails (auto-handled)
Examples:
>>> verify_embedding_availability("text-embedding@openai", "tenant_123")
(True, None)
>>> verify_embedding_availability("invalid_model", "tenant_123")
(False, {'code': 101, 'message': "Unsupported model: <invalid_model>"})
"""
try:
llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(embd_id)
in_llm_service = bool(LLMService.query(llm_name=llm_name, fid=llm_factory, model_type="embedding"))
tenant_llms = TenantLLMService.get_my_llms(tenant_id=tenant_id)
is_tenant_model = any(llm["llm_name"] == llm_name and llm["llm_factory"] == llm_factory and llm["model_type"] == "embedding" for llm in tenant_llms)
is_builtin_model = embd_id in settings.BUILTIN_EMBEDDING_MODELS
if not (is_builtin_model or is_tenant_model or in_llm_service):
return False, get_error_argument_result(f"Unsupported model: <{embd_id}>")
if not (is_builtin_model or is_tenant_model):
return False, get_error_argument_result(f"Unauthorized model: <{embd_id}>")
except OperationalError as e:
logging.exception(e)
return False, get_error_data_result(message="Database operation failed")
return True, None
def deep_merge(default: dict, custom: dict) -> dict:
"""
Recursively merges two dictionaries with priority given to `custom` values.
Creates a deep copy of the `default` dictionary and iteratively merges nested
dictionaries using a stack-based approach. Non-dict values in `custom` will
completely override corresponding entries in `default`.
Args:
default (dict): Base dictionary containing default values.
custom (dict): Dictionary containing overriding values.
Returns:
dict: New merged dictionary combining values from both inputs.
Example:
>>> from copy import deepcopy
>>> default = {"a": 1, "nested": {"x": 10, "y": 20}}
>>> custom = {"b": 2, "nested": {"y": 99, "z": 30}}
>>> deep_merge(default, custom)
{'a': 1, 'b': 2, 'nested': {'x': 10, 'y': 99, 'z': 30}}
>>> deep_merge({"config": {"mode": "auto"}}, {"config": "manual"})
{'config': 'manual'}
Notes:
1. Merge priority is always given to `custom` values at all nesting levels
2. Non-dict values (e.g. list, str) in `custom` will replace entire values
in `default`, even if the original value was a dictionary
3. Time complexity: O(N) where N is total key-value pairs in `custom`
4. Recommended for configuration merging and nested data updates
"""
merged = deepcopy(default)
stack = [(merged, custom)]
while stack:
base_dict, override_dict = stack.pop()
for key, val in override_dict.items():
if key in base_dict and isinstance(val, dict) and isinstance(base_dict[key], dict):
stack.append((base_dict[key], val))
else:
base_dict[key] = val
return merged
def remap_dictionary_keys(source_data: dict, key_aliases: dict = None) -> dict:
"""
Transform dictionary keys using a configurable mapping schema.
Args:
source_data: Original dictionary to process
key_aliases: Custom key transformation rules (Optional)
When provided, overrides default key mapping
Format: {<original_key>: <new_key>, ...}
Returns:
dict: New dictionary with transformed keys preserving original values
Example:
>>> input_data = {"old_key": "value", "another_field": 42}
>>> remap_dictionary_keys(input_data, {"old_key": "new_key"})
{'new_key': 'value', 'another_field': 42}
"""
DEFAULT_KEY_MAP = {
"chunk_num": "chunk_count",
"doc_num": "document_count",
"parser_id": "chunk_method",
"embd_id": "embedding_model",
}
transformed_data = {}
mapping = key_aliases or DEFAULT_KEY_MAP
for original_key, value in source_data.items():
mapped_key = mapping.get(original_key, original_key)
transformed_data[mapped_key] = value
return transformed_data
def get_mcp_tools(mcp_servers: list, timeout: float | int = 10) -> tuple[dict, str]:
results = {}
tool_call_sessions = []
try:
for mcp_server in mcp_servers:
server_key = mcp_server.id
cached_tools = mcp_server.variables.get("tools", {})
tool_call_session = MCPToolCallSession(mcp_server, mcp_server.variables)
tool_call_sessions.append(tool_call_session)
try:
tools = tool_call_session.get_tools(timeout)
except Exception:
tools = []
results[server_key] = []
for tool in tools:
tool_dict = tool.model_dump()
cached_tool = cached_tools.get(tool_dict["name"], {})
tool_dict["enabled"] = cached_tool.get("enabled", True)
results[server_key].append(tool_dict)
# PERF: blocking call to close sessions — consider moving to background thread or task queue
close_multiple_mcp_toolcall_sessions(tool_call_sessions)
return results, ""
except Exception as e:
return {}, str(e)
TimeoutException = Union[Type[BaseException], BaseException]
OnTimeoutCallback = Union[Callable[..., Any], Coroutine[Any, Any, Any]]
def timeout(seconds: float | int = None, attempts: int = 2, *, exception: Optional[TimeoutException] = None, on_timeout: Optional[OnTimeoutCallback] = None):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
result_queue = queue.Queue(maxsize=1)
def target():
try:
result = func(*args, **kwargs)
result_queue.put(result)
except Exception as e:
result_queue.put(e)
thread = threading.Thread(target=target)
thread.daemon = True
thread.start()
for a in range(attempts):
try:
if os.environ.get("ENABLE_TIMEOUT_ASSERTION"):
result = result_queue.get(timeout=seconds)
else:
result = result_queue.get()
if isinstance(result, Exception):
raise result
return result
except queue.Empty:
pass
raise TimeoutError(f"Function '{func.__name__}' timed out after {seconds} seconds and {attempts} attempts.")
@wraps(func)
async def async_wrapper(*args, **kwargs) -> Any:
if seconds is None:
return await func(*args, **kwargs)
for a in range(attempts):
try:
if os.environ.get("ENABLE_TIMEOUT_ASSERTION"):
with trio.fail_after(seconds):
return await func(*args, **kwargs)
else:
return await func(*args, **kwargs)
except trio.TooSlowError:
if a < attempts - 1:
continue
if on_timeout is not None:
if callable(on_timeout):
result = on_timeout()
if isinstance(result, Coroutine):
return await result
return result
return on_timeout
if exception is None:
raise TimeoutError(f"Operation timed out after {seconds} seconds and {attempts} attempts.")
if isinstance(exception, BaseException):
raise exception
if isinstance(exception, type) and issubclass(exception, BaseException):
raise exception(f"Operation timed out after {seconds} seconds and {attempts} attempts.")
raise RuntimeError("Invalid exception type provided")
if asyncio.iscoroutinefunction(func):
return async_wrapper
return wrapper
return decorator
async def is_strong_enough(chat_model, embedding_model):
count = settings.STRONG_TEST_COUNT
if not chat_model or not embedding_model:
return
if isinstance(count, int) and count <= 0:
return
@timeout(60, 2)
async def _is_strong_enough():
nonlocal chat_model, embedding_model
if embedding_model:
with trio.fail_after(10):
_ = await trio.to_thread.run_sync(lambda: embedding_model.encode(["Are you strong enough!?"]))
if chat_model:
with trio.fail_after(30):
res = await trio.to_thread.run_sync(lambda: chat_model.chat("Nothing special.", [{"role": "user", "content": "Are you strong enough!?"}], {}))
if res.find("**ERROR**") >= 0:
raise Exception(res)
# Pressure test for GraphRAG task
async with trio.open_nursery() as nursery:
for _ in range(count):
nursery.start_soon(_is_strong_enough)