mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-10-31 01:40:20 +00:00 
			
		
		
		
	 152072f900
			
		
	
	
		152072f900
		
			
		
	
	
	
	
		
			
			### What problem does this PR solve? #1594 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
		
			
				
	
	
		
			78 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			78 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #
 | |
| #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 | |
| #
 | |
| #  Licensed under the Apache License, Version 2.0 (the "License");
 | |
| #  you may not use this file except in compliance with the License.
 | |
| #  You may obtain a copy of the License at
 | |
| #
 | |
| #      http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| #  Unless required by applicable law or agreed to in writing, software
 | |
| #  distributed under the License is distributed on an "AS IS" BASIS,
 | |
| #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| #  See the License for the specific language governing permissions and
 | |
| #  limitations under the License.
 | |
| #
 | |
| """
 | |
| Reference:
 | |
|  - [graphrag](https://github.com/microsoft/graphrag)
 | |
| """
 | |
| 
 | |
| from typing import Any
 | |
| 
 | |
| import numpy as np
 | |
| import networkx as nx
 | |
| from graphrag.leiden import stable_largest_connected_component
 | |
| 
 | |
| 
 | |
| @dataclass
 | |
| class NodeEmbeddings:
 | |
|     """Node embeddings class definition."""
 | |
| 
 | |
|     nodes: list[str]
 | |
|     embeddings: np.ndarray
 | |
| 
 | |
| 
 | |
| def embed_nod2vec(
 | |
|     graph: nx.Graph | nx.DiGraph,
 | |
|     dimensions: int = 1536,
 | |
|     num_walks: int = 10,
 | |
|     walk_length: int = 40,
 | |
|     window_size: int = 2,
 | |
|     iterations: int = 3,
 | |
|     random_seed: int = 86,
 | |
| ) -> NodeEmbeddings:
 | |
|     """Generate node embeddings using Node2Vec."""
 | |
|     # generate embedding
 | |
|     lcc_tensors = gc.embed.node2vec_embed(  # type: ignore
 | |
|         graph=graph,
 | |
|         dimensions=dimensions,
 | |
|         window_size=window_size,
 | |
|         iterations=iterations,
 | |
|         num_walks=num_walks,
 | |
|         walk_length=walk_length,
 | |
|         random_seed=random_seed,
 | |
|     )
 | |
|     return NodeEmbeddings(embeddings=lcc_tensors[0], nodes=lcc_tensors[1])
 | |
| 
 | |
| 
 | |
| def run(graph: nx.Graph, args: dict[str, Any]) -> NodeEmbeddings:
 | |
|     """Run method definition."""
 | |
|     if args.get("use_lcc", True):
 | |
|         graph = stable_largest_connected_component(graph)
 | |
| 
 | |
|     # create graph embedding using node2vec
 | |
|     embeddings = embed_nod2vec(
 | |
|         graph=graph,
 | |
|         dimensions=args.get("dimensions", 1536),
 | |
|         num_walks=args.get("num_walks", 10),
 | |
|         walk_length=args.get("walk_length", 40),
 | |
|         window_size=args.get("window_size", 2),
 | |
|         iterations=args.get("iterations", 3),
 | |
|         random_seed=args.get("random_seed", 86),
 | |
|     )
 | |
| 
 | |
|     pairs = zip(embeddings.nodes, embeddings.embeddings.tolist(), strict=True)
 | |
|     sorted_pairs = sorted(pairs, key=lambda x: x[0])
 | |
| 
 | |
|     return dict(sorted_pairs) |