mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-10-31 09:50:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			373 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			373 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #
 | |
| #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 | |
| #
 | |
| #  Licensed under the Apache License, Version 2.0 (the "License");
 | |
| #  you may not use this file except in compliance with the License.
 | |
| #  You may obtain a copy of the License at
 | |
| #
 | |
| #      http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| #  Unless required by applicable law or agreed to in writing, software
 | |
| #  distributed under the License is distributed on an "AS IS" BASIS,
 | |
| #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| #  See the License for the specific language governing permissions and
 | |
| #  limitations under the License.
 | |
| #
 | |
| import datetime
 | |
| import json
 | |
| 
 | |
| from flask import request
 | |
| from flask_login import login_required, current_user
 | |
| 
 | |
| from rag.app.qa import rmPrefix, beAdoc
 | |
| from rag.app.tag import label_question
 | |
| from rag.nlp import search, rag_tokenizer
 | |
| from rag.prompts import keyword_extraction
 | |
| from rag.settings import PAGERANK_FLD
 | |
| from rag.utils import rmSpace
 | |
| from api.db import LLMType, ParserType
 | |
| from api.db.services.knowledgebase_service import KnowledgebaseService
 | |
| from api.db.services.llm_service import LLMBundle
 | |
| from api.db.services.user_service import UserTenantService
 | |
| from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
 | |
| from api.db.services.document_service import DocumentService
 | |
| from api import settings
 | |
| from api.utils.api_utils import get_json_result
 | |
| import xxhash
 | |
| import re
 | |
| 
 | |
| 
 | |
| @manager.route('/list', methods=['POST'])  # noqa: F821
 | |
| @login_required
 | |
| @validate_request("doc_id")
 | |
| def list_chunk():
 | |
|     req = request.json
 | |
|     doc_id = req["doc_id"]
 | |
|     page = int(req.get("page", 1))
 | |
|     size = int(req.get("size", 30))
 | |
|     question = req.get("keywords", "")
 | |
|     try:
 | |
|         tenant_id = DocumentService.get_tenant_id(req["doc_id"])
 | |
|         if not tenant_id:
 | |
|             return get_data_error_result(message="Tenant not found!")
 | |
|         e, doc = DocumentService.get_by_id(doc_id)
 | |
|         if not e:
 | |
|             return get_data_error_result(message="Document not found!")
 | |
|         kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
 | |
|         query = {
 | |
|             "doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
 | |
|         }
 | |
|         if "available_int" in req:
 | |
|             query["available_int"] = int(req["available_int"])
 | |
|         sres = settings.retrievaler.search(query, search.index_name(tenant_id), kb_ids, highlight=True)
 | |
|         res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
 | |
|         for id in sres.ids:
 | |
|             d = {
 | |
|                 "chunk_id": id,
 | |
|                 "content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[
 | |
|                     id].get(
 | |
|                     "content_with_weight", ""),
 | |
|                 "doc_id": sres.field[id]["doc_id"],
 | |
|                 "docnm_kwd": sres.field[id]["docnm_kwd"],
 | |
|                 "important_kwd": sres.field[id].get("important_kwd", []),
 | |
|                 "question_kwd": sres.field[id].get("question_kwd", []),
 | |
|                 "image_id": sres.field[id].get("img_id", ""),
 | |
|                 "available_int": int(sres.field[id].get("available_int", 1)),
 | |
|                 "positions": sres.field[id].get("position_int", []),
 | |
|             }
 | |
|             assert isinstance(d["positions"], list)
 | |
|             assert len(d["positions"]) == 0 or (isinstance(d["positions"][0], list) and len(d["positions"][0]) == 5)
 | |
|             res["chunks"].append(d)
 | |
|         return get_json_result(data=res)
 | |
|     except Exception as e:
 | |
|         if str(e).find("not_found") > 0:
 | |
|             return get_json_result(data=False, message='No chunk found!',
 | |
|                                    code=settings.RetCode.DATA_ERROR)
 | |
|         return server_error_response(e)
 | |
| 
 | |
| 
 | |
| @manager.route('/get', methods=['GET'])  # noqa: F821
 | |
| @login_required
 | |
| def get():
 | |
|     chunk_id = request.args["chunk_id"]
 | |
|     try:
 | |
|         tenants = UserTenantService.query(user_id=current_user.id)
 | |
|         if not tenants:
 | |
|             return get_data_error_result(message="Tenant not found!")
 | |
|         for tenant in tenants:
 | |
|             kb_ids = KnowledgebaseService.get_kb_ids(tenant.tenant_id)
 | |
|             chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant.tenant_id), kb_ids)
 | |
|             if chunk:
 | |
|                 break
 | |
|         if chunk is None:
 | |
|             return server_error_response(Exception("Chunk not found"))
 | |
| 
 | |
|         k = []
 | |
|         for n in chunk.keys():
 | |
|             if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
 | |
|                 k.append(n)
 | |
|         for n in k:
 | |
|             del chunk[n]
 | |
| 
 | |
|         return get_json_result(data=chunk)
 | |
|     except Exception as e:
 | |
|         if str(e).find("NotFoundError") >= 0:
 | |
|             return get_json_result(data=False, message='Chunk not found!',
 | |
|                                    code=settings.RetCode.DATA_ERROR)
 | |
|         return server_error_response(e)
 | |
| 
 | |
| 
 | |
| @manager.route('/set', methods=['POST'])  # noqa: F821
 | |
| @login_required
 | |
| @validate_request("doc_id", "chunk_id", "content_with_weight")
 | |
| def set():
 | |
|     req = request.json
 | |
|     d = {
 | |
|         "id": req["chunk_id"],
 | |
|         "content_with_weight": req["content_with_weight"]}
 | |
|     d["content_ltks"] = rag_tokenizer.tokenize(req["content_with_weight"])
 | |
|     d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
 | |
|     if "important_kwd" in req:
 | |
|         d["important_kwd"] = req["important_kwd"]
 | |
|         d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_kwd"]))
 | |
|     if "question_kwd" in req:
 | |
|         d["question_kwd"] = req["question_kwd"]
 | |
|         d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["question_kwd"]))
 | |
|     if "tag_kwd" in req:
 | |
|         d["tag_kwd"] = req["tag_kwd"]
 | |
|     if "tag_feas" in req:
 | |
|         d["tag_feas"] = req["tag_feas"]
 | |
|     if "available_int" in req:
 | |
|         d["available_int"] = req["available_int"]
 | |
| 
 | |
|     try:
 | |
|         tenant_id = DocumentService.get_tenant_id(req["doc_id"])
 | |
|         if not tenant_id:
 | |
|             return get_data_error_result(message="Tenant not found!")
 | |
| 
 | |
|         embd_id = DocumentService.get_embd_id(req["doc_id"])
 | |
|         embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_id)
 | |
| 
 | |
|         e, doc = DocumentService.get_by_id(req["doc_id"])
 | |
|         if not e:
 | |
|             return get_data_error_result(message="Document not found!")
 | |
| 
 | |
|         if doc.parser_id == ParserType.QA:
 | |
|             arr = [
 | |
|                 t for t in re.split(
 | |
|                     r"[\n\t]",
 | |
|                     req["content_with_weight"]) if len(t) > 1]
 | |
|             q, a = rmPrefix(arr[0]), rmPrefix("\n".join(arr[1:]))
 | |
|             d = beAdoc(d, q, a, not any(
 | |
|                 [rag_tokenizer.is_chinese(t) for t in q + a]))
 | |
| 
 | |
|         v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d.get("question_kwd") else "\n".join(d["question_kwd"])])
 | |
|         v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
 | |
|         d["q_%d_vec" % len(v)] = v.tolist()
 | |
|         settings.docStoreConn.update({"id": req["chunk_id"]}, d, search.index_name(tenant_id), doc.kb_id)
 | |
|         return get_json_result(data=True)
 | |
|     except Exception as e:
 | |
|         return server_error_response(e)
 | |
| 
 | |
| 
 | |
| @manager.route('/switch', methods=['POST'])  # noqa: F821
 | |
| @login_required
 | |
| @validate_request("chunk_ids", "available_int", "doc_id")
 | |
| def switch():
 | |
|     req = request.json
 | |
|     try:
 | |
|         e, doc = DocumentService.get_by_id(req["doc_id"])
 | |
|         if not e:
 | |
|             return get_data_error_result(message="Document not found!")
 | |
|         for cid in req["chunk_ids"]:
 | |
|             if not settings.docStoreConn.update({"id": cid},
 | |
|                                                 {"available_int": int(req["available_int"])},
 | |
|                                                 search.index_name(DocumentService.get_tenant_id(req["doc_id"])),
 | |
|                                                 doc.kb_id):
 | |
|                 return get_data_error_result(message="Index updating failure")
 | |
|         return get_json_result(data=True)
 | |
|     except Exception as e:
 | |
|         return server_error_response(e)
 | |
| 
 | |
| 
 | |
| @manager.route('/rm', methods=['POST'])  # noqa: F821
 | |
| @login_required
 | |
| @validate_request("chunk_ids", "doc_id")
 | |
| def rm():
 | |
|     req = request.json
 | |
|     try:
 | |
|         e, doc = DocumentService.get_by_id(req["doc_id"])
 | |
|         if not e:
 | |
|             return get_data_error_result(message="Document not found!")
 | |
|         if not settings.docStoreConn.delete({"id": req["chunk_ids"]}, search.index_name(current_user.id), doc.kb_id):
 | |
|             return get_data_error_result(message="Index updating failure")
 | |
|         deleted_chunk_ids = req["chunk_ids"]
 | |
|         chunk_number = len(deleted_chunk_ids)
 | |
|         DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
 | |
|         return get_json_result(data=True)
 | |
|     except Exception as e:
 | |
|         return server_error_response(e)
 | |
| 
 | |
| 
 | |
| @manager.route('/create', methods=['POST'])  # noqa: F821
 | |
| @login_required
 | |
| @validate_request("doc_id", "content_with_weight")
 | |
| def create():
 | |
|     req = request.json
 | |
|     chunck_id = xxhash.xxh64((req["content_with_weight"] + req["doc_id"]).encode("utf-8")).hexdigest()
 | |
|     d = {"id": chunck_id, "content_ltks": rag_tokenizer.tokenize(req["content_with_weight"]),
 | |
|          "content_with_weight": req["content_with_weight"]}
 | |
|     d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
 | |
|     d["important_kwd"] = req.get("important_kwd", [])
 | |
|     d["important_tks"] = rag_tokenizer.tokenize(" ".join(req.get("important_kwd", [])))
 | |
|     d["question_kwd"] = req.get("question_kwd", [])
 | |
|     d["question_tks"] = rag_tokenizer.tokenize("\n".join(req.get("question_kwd", [])))
 | |
|     d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
 | |
|     d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
 | |
| 
 | |
|     try:
 | |
|         e, doc = DocumentService.get_by_id(req["doc_id"])
 | |
|         if not e:
 | |
|             return get_data_error_result(message="Document not found!")
 | |
|         d["kb_id"] = [doc.kb_id]
 | |
|         d["docnm_kwd"] = doc.name
 | |
|         d["title_tks"] = rag_tokenizer.tokenize(doc.name)
 | |
|         d["doc_id"] = doc.id
 | |
| 
 | |
|         tenant_id = DocumentService.get_tenant_id(req["doc_id"])
 | |
|         if not tenant_id:
 | |
|             return get_data_error_result(message="Tenant not found!")
 | |
| 
 | |
|         e, kb = KnowledgebaseService.get_by_id(doc.kb_id)
 | |
|         if not e:
 | |
|             return get_data_error_result(message="Knowledgebase not found!")
 | |
|         if kb.pagerank:
 | |
|             d[PAGERANK_FLD] = kb.pagerank
 | |
| 
 | |
|         embd_id = DocumentService.get_embd_id(req["doc_id"])
 | |
|         embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING.value, embd_id)
 | |
| 
 | |
|         v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d["question_kwd"] else "\n".join(d["question_kwd"])])
 | |
|         v = 0.1 * v[0] + 0.9 * v[1]
 | |
|         d["q_%d_vec" % len(v)] = v.tolist()
 | |
|         settings.docStoreConn.insert([d], search.index_name(tenant_id), doc.kb_id)
 | |
| 
 | |
|         DocumentService.increment_chunk_num(
 | |
|             doc.id, doc.kb_id, c, 1, 0)
 | |
|         return get_json_result(data={"chunk_id": chunck_id})
 | |
|     except Exception as e:
 | |
|         return server_error_response(e)
 | |
| 
 | |
| 
 | |
| @manager.route('/retrieval_test', methods=['POST'])  # noqa: F821
 | |
| @login_required
 | |
| @validate_request("kb_id", "question")
 | |
| def retrieval_test():
 | |
|     req = request.json
 | |
|     page = int(req.get("page", 1))
 | |
|     size = int(req.get("size", 30))
 | |
|     question = req["question"]
 | |
|     kb_ids = req["kb_id"]
 | |
|     if isinstance(kb_ids, str):
 | |
|         kb_ids = [kb_ids]
 | |
|     doc_ids = req.get("doc_ids", [])
 | |
|     similarity_threshold = float(req.get("similarity_threshold", 0.0))
 | |
|     vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
 | |
|     use_kg = req.get("use_kg", False)
 | |
|     top = int(req.get("top_k", 1024))
 | |
|     tenant_ids = []
 | |
| 
 | |
|     try:
 | |
|         tenants = UserTenantService.query(user_id=current_user.id)
 | |
|         for kb_id in kb_ids:
 | |
|             for tenant in tenants:
 | |
|                 if KnowledgebaseService.query(
 | |
|                         tenant_id=tenant.tenant_id, id=kb_id):
 | |
|                     tenant_ids.append(tenant.tenant_id)
 | |
|                     break
 | |
|             else:
 | |
|                 return get_json_result(
 | |
|                     data=False, message='Only owner of knowledgebase authorized for this operation.',
 | |
|                     code=settings.RetCode.OPERATING_ERROR)
 | |
| 
 | |
|         e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
 | |
|         if not e:
 | |
|             return get_data_error_result(message="Knowledgebase not found!")
 | |
| 
 | |
|         embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
 | |
| 
 | |
|         rerank_mdl = None
 | |
|         if req.get("rerank_id"):
 | |
|             rerank_mdl = LLMBundle(kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
 | |
| 
 | |
|         if req.get("keyword", False):
 | |
|             chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
 | |
|             question += keyword_extraction(chat_mdl, question)
 | |
| 
 | |
|         labels = label_question(question, [kb])
 | |
|         ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
 | |
|                                similarity_threshold, vector_similarity_weight, top,
 | |
|                                doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"),
 | |
|                                rank_feature=labels
 | |
|                                )
 | |
|         if use_kg:
 | |
|             ck = settings.kg_retrievaler.retrieval(question,
 | |
|                                                    tenant_ids,
 | |
|                                                    kb_ids,
 | |
|                                                    embd_mdl,
 | |
|                                                    LLMBundle(kb.tenant_id, LLMType.CHAT))
 | |
|             if ck["content_with_weight"]:
 | |
|                 ranks["chunks"].insert(0, ck)
 | |
| 
 | |
|         for c in ranks["chunks"]:
 | |
|             c.pop("vector", None)
 | |
|         ranks["labels"] = labels
 | |
| 
 | |
|         return get_json_result(data=ranks)
 | |
|     except Exception as e:
 | |
|         if str(e).find("not_found") > 0:
 | |
|             return get_json_result(data=False, message='No chunk found! Check the chunk status please!',
 | |
|                                    code=settings.RetCode.DATA_ERROR)
 | |
|         return server_error_response(e)
 | |
| 
 | |
| 
 | |
| @manager.route('/knowledge_graph', methods=['GET'])  # noqa: F821
 | |
| @login_required
 | |
| def knowledge_graph():
 | |
|     doc_id = request.args["doc_id"]
 | |
|     tenant_id = DocumentService.get_tenant_id(doc_id)
 | |
|     kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
 | |
|     req = {
 | |
|         "doc_ids": [doc_id],
 | |
|         "knowledge_graph_kwd": ["graph", "mind_map"]
 | |
|     }
 | |
|     sres = settings.retrievaler.search(req, search.index_name(tenant_id), kb_ids)
 | |
|     obj = {"graph": {}, "mind_map": {}}
 | |
|     for id in sres.ids[:2]:
 | |
|         ty = sres.field[id]["knowledge_graph_kwd"]
 | |
|         try:
 | |
|             content_json = json.loads(sres.field[id]["content_with_weight"])
 | |
|         except Exception:
 | |
|             continue
 | |
| 
 | |
|         if ty == 'mind_map':
 | |
|             node_dict = {}
 | |
| 
 | |
|             def repeat_deal(content_json, node_dict):
 | |
|                 if 'id' in content_json:
 | |
|                     if content_json['id'] in node_dict:
 | |
|                         node_name = content_json['id']
 | |
|                         content_json['id'] += f"({node_dict[content_json['id']]})"
 | |
|                         node_dict[node_name] += 1
 | |
|                     else:
 | |
|                         node_dict[content_json['id']] = 1
 | |
|                 if 'children' in content_json and content_json['children']:
 | |
|                     for item in content_json['children']:
 | |
|                         repeat_deal(item, node_dict)
 | |
| 
 | |
|             repeat_deal(content_json, node_dict)
 | |
| 
 | |
|         obj[ty] = content_json
 | |
| 
 | |
|     return get_json_result(data=obj)
 | 
