mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-10-31 09:50:00 +00:00 
			
		
		
		
	 163e71d06f
			
		
	
	
		163e71d06f
		
			
		
	
	
	
	
		
			
			### What problem does this PR solve? #6523 ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
		
			
				
	
	
		
			364 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			364 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #
 | |
| #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 | |
| #
 | |
| #  Licensed under the Apache License, Version 2.0 (the "License");
 | |
| #  you may not use this file except in compliance with the License.
 | |
| #  You may obtain a copy of the License at
 | |
| #
 | |
| #      http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| #  Unless required by applicable law or agreed to in writing, software
 | |
| #  distributed under the License is distributed on an "AS IS" BASIS,
 | |
| #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| #  See the License for the specific language governing permissions and
 | |
| #  limitations under the License.
 | |
| #
 | |
| import logging
 | |
| import json
 | |
| import os
 | |
| from flask import request
 | |
| from flask_login import login_required, current_user
 | |
| from api.db.services.llm_service import LLMFactoriesService, TenantLLMService, LLMService
 | |
| from api import settings
 | |
| from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
 | |
| from api.db import StatusEnum, LLMType
 | |
| from api.db.db_models import TenantLLM
 | |
| from api.utils.api_utils import get_json_result
 | |
| from api.utils.file_utils import get_project_base_directory
 | |
| from rag.llm import EmbeddingModel, ChatModel, RerankModel, CvModel, TTSModel
 | |
| 
 | |
| 
 | |
| @manager.route('/factories', methods=['GET'])  # noqa: F821
 | |
| @login_required
 | |
| def factories():
 | |
|     try:
 | |
|         fac = LLMFactoriesService.get_all()
 | |
|         fac = [f.to_dict() for f in fac if f.name not in ["Youdao", "FastEmbed", "BAAI"]]
 | |
|         llms = LLMService.get_all()
 | |
|         mdl_types = {}
 | |
|         for m in llms:
 | |
|             if m.status != StatusEnum.VALID.value:
 | |
|                 continue
 | |
|             if m.fid not in mdl_types:
 | |
|                 mdl_types[m.fid] = set([])
 | |
|             mdl_types[m.fid].add(m.model_type)
 | |
|         for f in fac:
 | |
|             f["model_types"] = list(mdl_types.get(f["name"], [LLMType.CHAT, LLMType.EMBEDDING, LLMType.RERANK,
 | |
|                                                               LLMType.IMAGE2TEXT, LLMType.SPEECH2TEXT, LLMType.TTS]))
 | |
|         return get_json_result(data=fac)
 | |
|     except Exception as e:
 | |
|         return server_error_response(e)
 | |
| 
 | |
| 
 | |
| @manager.route('/set_api_key', methods=['POST'])  # noqa: F821
 | |
| @login_required
 | |
| @validate_request("llm_factory", "api_key")
 | |
| def set_api_key():
 | |
|     req = request.json
 | |
|     # test if api key works
 | |
|     chat_passed, embd_passed, rerank_passed = False, False, False
 | |
|     factory = req["llm_factory"]
 | |
|     msg = ""
 | |
|     for llm in LLMService.query(fid=factory):
 | |
|         if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
 | |
|             assert factory in EmbeddingModel, f"Embedding model from {factory} is not supported yet."
 | |
|             mdl = EmbeddingModel[factory](
 | |
|                 req["api_key"], llm.llm_name, base_url=req.get("base_url"))
 | |
|             try:
 | |
|                 arr, tc = mdl.encode(["Test if the api key is available"])
 | |
|                 if len(arr[0]) == 0:
 | |
|                     raise Exception("Fail")
 | |
|                 embd_passed = True
 | |
|             except Exception as e:
 | |
|                 msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
 | |
|         elif not chat_passed and llm.model_type == LLMType.CHAT.value:
 | |
|             assert factory in ChatModel, f"Chat model from {factory} is not supported yet."
 | |
|             mdl = ChatModel[factory](
 | |
|                 req["api_key"], llm.llm_name, base_url=req.get("base_url"))
 | |
|             try:
 | |
|                 m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}],
 | |
|                                  {"temperature": 0.9, 'max_tokens': 50})
 | |
|                 if m.find("**ERROR**") >= 0:
 | |
|                     raise Exception(m)
 | |
|                 chat_passed = True
 | |
|             except Exception as e:
 | |
|                 msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
 | |
|                     e)
 | |
|         elif not rerank_passed and llm.model_type == LLMType.RERANK:
 | |
|             assert factory in RerankModel, f"Re-rank model from {factory} is not supported yet."
 | |
|             mdl = RerankModel[factory](
 | |
|                 req["api_key"], llm.llm_name, base_url=req.get("base_url"))
 | |
|             try:
 | |
|                 arr, tc = mdl.similarity("What's the weather?", ["Is it sunny today?"])
 | |
|                 if len(arr) == 0 or tc == 0:
 | |
|                     raise Exception("Fail")
 | |
|                 rerank_passed = True
 | |
|                 logging.debug(f'passed model rerank {llm.llm_name}')
 | |
|             except Exception as e:
 | |
|                 msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
 | |
|                     e)
 | |
|         if any([embd_passed, chat_passed, rerank_passed]):
 | |
|             msg = ''
 | |
|             break
 | |
| 
 | |
|     if msg:
 | |
|         return get_data_error_result(message=msg)
 | |
| 
 | |
|     llm_config = {
 | |
|         "api_key": req["api_key"],
 | |
|         "api_base": req.get("base_url", "")
 | |
|     }
 | |
|     for n in ["model_type", "llm_name"]:
 | |
|         if n in req:
 | |
|             llm_config[n] = req[n]
 | |
| 
 | |
|     for llm in LLMService.query(fid=factory):
 | |
|         llm_config["max_tokens"]=llm.max_tokens
 | |
|         if not TenantLLMService.filter_update(
 | |
|                 [TenantLLM.tenant_id == current_user.id,
 | |
|                  TenantLLM.llm_factory == factory,
 | |
|                  TenantLLM.llm_name == llm.llm_name],
 | |
|                 llm_config):
 | |
|             TenantLLMService.save(
 | |
|                 tenant_id=current_user.id,
 | |
|                 llm_factory=factory,
 | |
|                 llm_name=llm.llm_name,
 | |
|                 model_type=llm.model_type,
 | |
|                 api_key=llm_config["api_key"],
 | |
|                 api_base=llm_config["api_base"],
 | |
|                 max_tokens=llm_config["max_tokens"]
 | |
|             )
 | |
| 
 | |
|     return get_json_result(data=True)
 | |
| 
 | |
| 
 | |
| @manager.route('/add_llm', methods=['POST'])  # noqa: F821
 | |
| @login_required
 | |
| @validate_request("llm_factory")
 | |
| def add_llm():
 | |
|     req = request.json
 | |
|     factory = req["llm_factory"]
 | |
|     api_key = req.get("api_key", "x")
 | |
|     llm_name = req.get("llm_name")
 | |
| 
 | |
|     def apikey_json(keys):
 | |
|         nonlocal req
 | |
|         return json.dumps({k: req.get(k, "") for k in keys})
 | |
| 
 | |
|     if factory == "VolcEngine":
 | |
|         # For VolcEngine, due to its special authentication method
 | |
|         # Assemble ark_api_key endpoint_id into api_key
 | |
|         api_key = apikey_json(["ark_api_key", "endpoint_id"])
 | |
| 
 | |
|     elif factory == "Tencent Hunyuan":
 | |
|         req["api_key"] = apikey_json(["hunyuan_sid", "hunyuan_sk"])
 | |
|         return set_api_key()
 | |
| 
 | |
|     elif factory == "Tencent Cloud":
 | |
|         req["api_key"] = apikey_json(["tencent_cloud_sid", "tencent_cloud_sk"])
 | |
|         return set_api_key()
 | |
| 
 | |
|     elif factory == "Bedrock":
 | |
|         # For Bedrock, due to its special authentication method
 | |
|         # Assemble bedrock_ak, bedrock_sk, bedrock_region
 | |
|         api_key = apikey_json(["bedrock_ak", "bedrock_sk", "bedrock_region"])
 | |
| 
 | |
|     elif factory == "LocalAI":
 | |
|         llm_name += "___LocalAI"
 | |
| 
 | |
|     elif factory == "HuggingFace":
 | |
|         llm_name += "___HuggingFace"
 | |
| 
 | |
|     elif factory == "OpenAI-API-Compatible":
 | |
|         llm_name += "___OpenAI-API"
 | |
| 
 | |
|     elif factory == "VLLM":
 | |
|         llm_name += "___VLLM"
 | |
| 
 | |
|     elif factory == "XunFei Spark":
 | |
|         if req["model_type"] == "chat":
 | |
|             api_key = req.get("spark_api_password", "")
 | |
|         elif req["model_type"] == "tts":
 | |
|             api_key = apikey_json(["spark_app_id", "spark_api_secret", "spark_api_key"])
 | |
| 
 | |
|     elif factory == "BaiduYiyan":
 | |
|         api_key = apikey_json(["yiyan_ak", "yiyan_sk"])
 | |
| 
 | |
|     elif factory == "Fish Audio":
 | |
|         api_key = apikey_json(["fish_audio_ak", "fish_audio_refid"])
 | |
| 
 | |
|     elif factory == "Google Cloud":
 | |
|         api_key = apikey_json(["google_project_id", "google_region", "google_service_account_key"])
 | |
| 
 | |
|     elif factory == "Azure-OpenAI":
 | |
|         api_key = apikey_json(["api_key", "api_version"])
 | |
| 
 | |
|     llm = {
 | |
|         "tenant_id": current_user.id,
 | |
|         "llm_factory": factory,
 | |
|         "model_type": req["model_type"],
 | |
|         "llm_name": llm_name,
 | |
|         "api_base": req.get("api_base", ""),
 | |
|         "api_key": api_key,
 | |
|         "max_tokens": req.get("max_tokens")
 | |
|     }
 | |
| 
 | |
|     msg = ""
 | |
|     mdl_nm = llm["llm_name"].split("___")[0]
 | |
|     if llm["model_type"] == LLMType.EMBEDDING.value:
 | |
|         assert factory in EmbeddingModel, f"Embedding model from {factory} is not supported yet."
 | |
|         mdl = EmbeddingModel[factory](
 | |
|             key=llm['api_key'],
 | |
|             model_name=mdl_nm,
 | |
|             base_url=llm["api_base"])
 | |
|         try:
 | |
|             arr, tc = mdl.encode(["Test if the api key is available"])
 | |
|             if len(arr[0]) == 0:
 | |
|                 raise Exception("Fail")
 | |
|         except Exception as e:
 | |
|             msg += f"\nFail to access embedding model({mdl_nm})." + str(e)
 | |
|     elif llm["model_type"] == LLMType.CHAT.value:
 | |
|         assert factory in ChatModel, f"Chat model from {factory} is not supported yet."
 | |
|         mdl = ChatModel[factory](
 | |
|             key=llm['api_key'],
 | |
|             model_name=mdl_nm,
 | |
|             base_url=llm["api_base"]
 | |
|         )
 | |
|         try:
 | |
|             m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
 | |
|                 "temperature": 0.9})
 | |
|             if not tc and m.find("**ERROR**:") >= 0:
 | |
|                 raise Exception(m)
 | |
|         except Exception as e:
 | |
|             msg += f"\nFail to access model({mdl_nm})." + str(
 | |
|                 e)
 | |
|     elif llm["model_type"] == LLMType.RERANK:
 | |
|         assert factory in RerankModel, f"RE-rank model from {factory} is not supported yet."
 | |
|         try:
 | |
|             mdl = RerankModel[factory](
 | |
|                 key=llm["api_key"],
 | |
|                 model_name=mdl_nm,
 | |
|                 base_url=llm["api_base"]
 | |
|             )
 | |
|             arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!", "Ohh, my friend!"])
 | |
|             if len(arr) == 0:
 | |
|                 raise Exception("Not known.")
 | |
|         except KeyError:
 | |
|             msg += f"{factory} dose not support this model({mdl_nm})"
 | |
|         except Exception as e:
 | |
|             msg += f"\nFail to access model({mdl_nm})." + str(
 | |
|                 e)
 | |
|     elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
 | |
|         assert factory in CvModel, f"Image to text model from {factory} is not supported yet."
 | |
|         mdl = CvModel[factory](
 | |
|             key=llm["api_key"],
 | |
|             model_name=mdl_nm,
 | |
|             base_url=llm["api_base"]
 | |
|         )
 | |
|         try:
 | |
|             with open(os.path.join(get_project_base_directory(), "web/src/assets/yay.jpg"), "rb") as f:
 | |
|                 m, tc = mdl.describe(f.read())
 | |
|                 if not m and not tc:
 | |
|                     raise Exception(m)
 | |
|         except Exception as e:
 | |
|             msg += f"\nFail to access model({mdl_nm})." + str(e)
 | |
|     elif llm["model_type"] == LLMType.TTS:
 | |
|         assert factory in TTSModel, f"TTS model from {factory} is not supported yet."
 | |
|         mdl = TTSModel[factory](
 | |
|             key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"]
 | |
|         )
 | |
|         try:
 | |
|             for resp in mdl.tts("Hello~ Ragflower!"):
 | |
|                 pass
 | |
|         except RuntimeError as e:
 | |
|             msg += f"\nFail to access model({mdl_nm})." + str(e)
 | |
|     else:
 | |
|         # TODO: check other type of models
 | |
|         pass
 | |
| 
 | |
|     if msg:
 | |
|         return get_data_error_result(message=msg)
 | |
| 
 | |
|     if not TenantLLMService.filter_update(
 | |
|             [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory,
 | |
|              TenantLLM.llm_name == llm["llm_name"]], llm):
 | |
|         TenantLLMService.save(**llm)
 | |
| 
 | |
|     return get_json_result(data=True)
 | |
| 
 | |
| 
 | |
| @manager.route('/delete_llm', methods=['POST'])  # noqa: F821
 | |
| @login_required
 | |
| @validate_request("llm_factory", "llm_name")
 | |
| def delete_llm():
 | |
|     req = request.json
 | |
|     TenantLLMService.filter_delete(
 | |
|         [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"],
 | |
|          TenantLLM.llm_name == req["llm_name"]])
 | |
|     return get_json_result(data=True)
 | |
| 
 | |
| 
 | |
| @manager.route('/delete_factory', methods=['POST'])  # noqa: F821
 | |
| @login_required
 | |
| @validate_request("llm_factory")
 | |
| def delete_factory():
 | |
|     req = request.json
 | |
|     TenantLLMService.filter_delete(
 | |
|         [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"]])
 | |
|     return get_json_result(data=True)
 | |
| 
 | |
| 
 | |
| @manager.route('/my_llms', methods=['GET'])  # noqa: F821
 | |
| @login_required
 | |
| def my_llms():
 | |
|     try:
 | |
|         res = {}
 | |
|         for o in TenantLLMService.get_my_llms(current_user.id):
 | |
|             if o["llm_factory"] not in res:
 | |
|                 res[o["llm_factory"]] = {
 | |
|                     "tags": o["tags"],
 | |
|                     "llm": []
 | |
|                 }
 | |
|             res[o["llm_factory"]]["llm"].append({
 | |
|                 "type": o["model_type"],
 | |
|                 "name": o["llm_name"],
 | |
|                 "used_token": o["used_tokens"]
 | |
|             })
 | |
|         return get_json_result(data=res)
 | |
|     except Exception as e:
 | |
|         return server_error_response(e)
 | |
| 
 | |
| 
 | |
| @manager.route('/list', methods=['GET'])  # noqa: F821
 | |
| @login_required
 | |
| def list_app():
 | |
|     self_deployed = ["Youdao", "FastEmbed", "BAAI", "Ollama", "Xinference", "LocalAI", "LM-Studio", "GPUStack"]
 | |
|     weighted = ["Youdao", "FastEmbed", "BAAI"] if settings.LIGHTEN != 0 else []
 | |
|     model_type = request.args.get("model_type")
 | |
|     try:
 | |
|         objs = TenantLLMService.query(tenant_id=current_user.id)
 | |
|         facts = set([o.to_dict()["llm_factory"] for o in objs if o.api_key])
 | |
|         llms = LLMService.get_all()
 | |
|         llms = [m.to_dict()
 | |
|                 for m in llms if m.status == StatusEnum.VALID.value and m.fid not in weighted]
 | |
|         for m in llms:
 | |
|             m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in self_deployed
 | |
| 
 | |
|         llm_set = set([m["llm_name"] + "@" + m["fid"] for m in llms])
 | |
|         for o in objs:
 | |
|             if o.llm_name + "@" + o.llm_factory in llm_set:
 | |
|                 continue
 | |
|             llms.append({"llm_name": o.llm_name, "model_type": o.model_type, "fid": o.llm_factory, "available": True})
 | |
| 
 | |
|         res = {}
 | |
|         for m in llms:
 | |
|             if model_type and m["model_type"].find(model_type) < 0:
 | |
|                 continue
 | |
|             if m["fid"] not in res:
 | |
|                 res[m["fid"]] = []
 | |
|             res[m["fid"]].append(m)
 | |
| 
 | |
|         return get_json_result(data=res)
 | |
|     except Exception as e:
 | |
|         return server_error_response(e)
 |