mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-05 19:39:02 +00:00
### What problem does this PR solve?
This PR fixes a critical bug in the session listing endpoint where the
application crashes with an `AttributeError` when processing chunk data
that contains non-dictionary objects.
**Error before fix:**
```json
{
"code": 100,
"data": null,
"message": "AttributeError(\"'str' object has no attribute 'get'\")"
}
```
**Root cause:**
The code assumes all items in the `chunks` array are dictionary objects
and directly calls the `.get()` method on them. However, in some cases,
the chunks array contains string objects or other non-dictionary types,
causing the application to crash when attempting to call `.get()` on a
string.
**Solution:**
Added type validation to ensure each chunk is a dictionary before
processing. Non-dictionary chunks are safely skipped, preventing the
crash while maintaining functionality for valid chunk data.
This fix improves the robustness of the session listing endpoint and
ensures users can retrieve their conversation sessions without
encountering server errors due to data format inconsistencies.
### Type of change
- [x] Bug Fix (non-breaking change which fixes an issue)
1093 lines
44 KiB
Python
1093 lines
44 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import json
|
|
import re
|
|
import time
|
|
import tiktoken
|
|
from flask import Response, jsonify, request
|
|
from agent.canvas import Canvas
|
|
from api import settings
|
|
from api.db import LLMType, StatusEnum
|
|
from api.db.db_models import APIToken
|
|
from api.db.services.api_service import API4ConversationService
|
|
from api.db.services.canvas_service import UserCanvasService, completionOpenAI
|
|
from api.db.services.canvas_service import completion as agent_completion
|
|
from api.db.services.conversation_service import ConversationService, iframe_completion
|
|
from api.db.services.conversation_service import completion as rag_completion
|
|
from api.db.services.dialog_service import DialogService, ask, chat, gen_mindmap
|
|
from api.db.services.knowledgebase_service import KnowledgebaseService
|
|
from api.db.services.llm_service import LLMBundle
|
|
from api.db.services.search_service import SearchService
|
|
from api.db.services.user_service import UserTenantService
|
|
from api.utils import get_uuid
|
|
from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_data_result, get_json_result, get_result, server_error_response, token_required, validate_request
|
|
from rag.app.tag import label_question
|
|
from rag.prompts import chunks_format
|
|
from rag.prompts.prompt_template import load_prompt
|
|
from rag.prompts.prompts import cross_languages, keyword_extraction
|
|
|
|
|
|
@manager.route("/chats/<chat_id>/sessions", methods=["POST"]) # noqa: F821
|
|
@token_required
|
|
def create(tenant_id, chat_id):
|
|
req = request.json
|
|
req["dialog_id"] = chat_id
|
|
dia = DialogService.query(tenant_id=tenant_id, id=req["dialog_id"], status=StatusEnum.VALID.value)
|
|
if not dia:
|
|
return get_error_data_result(message="You do not own the assistant.")
|
|
conv = {
|
|
"id": get_uuid(),
|
|
"dialog_id": req["dialog_id"],
|
|
"name": req.get("name", "New session"),
|
|
"message": [{"role": "assistant", "content": dia[0].prompt_config.get("prologue")}],
|
|
"user_id": req.get("user_id", ""),
|
|
"reference": [{}],
|
|
}
|
|
if not conv.get("name"):
|
|
return get_error_data_result(message="`name` can not be empty.")
|
|
ConversationService.save(**conv)
|
|
e, conv = ConversationService.get_by_id(conv["id"])
|
|
if not e:
|
|
return get_error_data_result(message="Fail to create a session!")
|
|
conv = conv.to_dict()
|
|
conv["messages"] = conv.pop("message")
|
|
conv["chat_id"] = conv.pop("dialog_id")
|
|
del conv["reference"]
|
|
return get_result(data=conv)
|
|
|
|
|
|
@manager.route("/agents/<agent_id>/sessions", methods=["POST"]) # noqa: F821
|
|
@token_required
|
|
def create_agent_session(tenant_id, agent_id):
|
|
user_id = request.args.get("user_id", tenant_id)
|
|
e, cvs = UserCanvasService.get_by_id(agent_id)
|
|
if not e:
|
|
return get_error_data_result("Agent not found.")
|
|
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
|
|
return get_error_data_result("You cannot access the agent.")
|
|
if not isinstance(cvs.dsl, str):
|
|
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
|
|
|
|
session_id=get_uuid()
|
|
canvas = Canvas(cvs.dsl, tenant_id, agent_id)
|
|
canvas.reset()
|
|
|
|
cvs.dsl = json.loads(str(canvas))
|
|
conv = {"id": session_id, "dialog_id": cvs.id, "user_id": user_id, "message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl}
|
|
API4ConversationService.save(**conv)
|
|
conv["agent_id"] = conv.pop("dialog_id")
|
|
return get_result(data=conv)
|
|
|
|
|
|
@manager.route("/chats/<chat_id>/sessions/<session_id>", methods=["PUT"]) # noqa: F821
|
|
@token_required
|
|
def update(tenant_id, chat_id, session_id):
|
|
req = request.json
|
|
req["dialog_id"] = chat_id
|
|
conv_id = session_id
|
|
conv = ConversationService.query(id=conv_id, dialog_id=chat_id)
|
|
if not conv:
|
|
return get_error_data_result(message="Session does not exist")
|
|
if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
|
|
return get_error_data_result(message="You do not own the session")
|
|
if "message" in req or "messages" in req:
|
|
return get_error_data_result(message="`message` can not be change")
|
|
if "reference" in req:
|
|
return get_error_data_result(message="`reference` can not be change")
|
|
if "name" in req and not req.get("name"):
|
|
return get_error_data_result(message="`name` can not be empty.")
|
|
if not ConversationService.update_by_id(conv_id, req):
|
|
return get_error_data_result(message="Session updates error")
|
|
return get_result()
|
|
|
|
|
|
@manager.route("/chats/<chat_id>/completions", methods=["POST"]) # noqa: F821
|
|
@token_required
|
|
def chat_completion(tenant_id, chat_id):
|
|
req = request.json
|
|
if not req:
|
|
req = {"question": ""}
|
|
if not req.get("session_id"):
|
|
req["question"] = ""
|
|
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
|
|
return get_error_data_result(f"You don't own the chat {chat_id}")
|
|
if req.get("session_id"):
|
|
if not ConversationService.query(id=req["session_id"], dialog_id=chat_id):
|
|
return get_error_data_result(f"You don't own the session {req['session_id']}")
|
|
if req.get("stream", True):
|
|
resp = Response(rag_completion(tenant_id, chat_id, **req), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
|
|
return resp
|
|
else:
|
|
answer = None
|
|
for ans in rag_completion(tenant_id, chat_id, **req):
|
|
answer = ans
|
|
break
|
|
return get_result(data=answer)
|
|
|
|
|
|
@manager.route("/chats_openai/<chat_id>/chat/completions", methods=["POST"]) # noqa: F821
|
|
@validate_request("model", "messages") # noqa: F821
|
|
@token_required
|
|
def chat_completion_openai_like(tenant_id, chat_id):
|
|
"""
|
|
OpenAI-like chat completion API that simulates the behavior of OpenAI's completions endpoint.
|
|
|
|
This function allows users to interact with a model and receive responses based on a series of historical messages.
|
|
If `stream` is set to True (by default), the response will be streamed in chunks, mimicking the OpenAI-style API.
|
|
Set `stream` to False explicitly, the response will be returned in a single complete answer.
|
|
|
|
Reference:
|
|
|
|
- If `stream` is True, the final answer and reference information will appear in the **last chunk** of the stream.
|
|
- If `stream` is False, the reference will be included in `choices[0].message.reference`.
|
|
|
|
Example usage:
|
|
|
|
curl -X POST https://ragflow_address.com/api/v1/chats_openai/<chat_id>/chat/completions \
|
|
-H "Content-Type: application/json" \
|
|
-H "Authorization: Bearer $RAGFLOW_API_KEY" \
|
|
-d '{
|
|
"model": "model",
|
|
"messages": [{"role": "user", "content": "Say this is a test!"}],
|
|
"stream": true
|
|
}'
|
|
|
|
Alternatively, you can use Python's `OpenAI` client:
|
|
|
|
from openai import OpenAI
|
|
|
|
model = "model"
|
|
client = OpenAI(api_key="ragflow-api-key", base_url=f"http://ragflow_address/api/v1/chats_openai/<chat_id>")
|
|
|
|
stream = True
|
|
reference = True
|
|
|
|
completion = client.chat.completions.create(
|
|
model=model,
|
|
messages=[
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{"role": "user", "content": "Who are you?"},
|
|
{"role": "assistant", "content": "I am an AI assistant named..."},
|
|
{"role": "user", "content": "Can you tell me how to install neovim"},
|
|
],
|
|
stream=stream,
|
|
extra_body={"reference": reference}
|
|
)
|
|
|
|
if stream:
|
|
for chunk in completion:
|
|
print(chunk)
|
|
if reference and chunk.choices[0].finish_reason == "stop":
|
|
print(f"Reference:\n{chunk.choices[0].delta.reference}")
|
|
print(f"Final content:\n{chunk.choices[0].delta.final_content}")
|
|
else:
|
|
print(completion.choices[0].message.content)
|
|
if reference:
|
|
print(completion.choices[0].message.reference)
|
|
"""
|
|
req = request.get_json()
|
|
|
|
need_reference = bool(req.get("reference", False))
|
|
|
|
messages = req.get("messages", [])
|
|
# To prevent empty [] input
|
|
if len(messages) < 1:
|
|
return get_error_data_result("You have to provide messages.")
|
|
if messages[-1]["role"] != "user":
|
|
return get_error_data_result("The last content of this conversation is not from user.")
|
|
|
|
prompt = messages[-1]["content"]
|
|
# Treat context tokens as reasoning tokens
|
|
context_token_used = sum(len(message["content"]) for message in messages)
|
|
|
|
dia = DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value)
|
|
if not dia:
|
|
return get_error_data_result(f"You don't own the chat {chat_id}")
|
|
dia = dia[0]
|
|
|
|
# Filter system and non-sense assistant messages
|
|
msg = []
|
|
for m in messages:
|
|
if m["role"] == "system":
|
|
continue
|
|
if m["role"] == "assistant" and not msg:
|
|
continue
|
|
msg.append(m)
|
|
|
|
# tools = get_tools()
|
|
# toolcall_session = SimpleFunctionCallServer()
|
|
tools = None
|
|
toolcall_session = None
|
|
|
|
if req.get("stream", True):
|
|
# The value for the usage field on all chunks except for the last one will be null.
|
|
# The usage field on the last chunk contains token usage statistics for the entire request.
|
|
# The choices field on the last chunk will always be an empty array [].
|
|
def streamed_response_generator(chat_id, dia, msg):
|
|
token_used = 0
|
|
answer_cache = ""
|
|
reasoning_cache = ""
|
|
last_ans = {}
|
|
response = {
|
|
"id": f"chatcmpl-{chat_id}",
|
|
"choices": [
|
|
{
|
|
"delta": {
|
|
"content": "",
|
|
"role": "assistant",
|
|
"function_call": None,
|
|
"tool_calls": None,
|
|
"reasoning_content": "",
|
|
},
|
|
"finish_reason": None,
|
|
"index": 0,
|
|
"logprobs": None,
|
|
}
|
|
],
|
|
"created": int(time.time()),
|
|
"model": "model",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "",
|
|
"usage": None,
|
|
}
|
|
|
|
try:
|
|
for ans in chat(dia, msg, True, toolcall_session=toolcall_session, tools=tools, quote=need_reference):
|
|
last_ans = ans
|
|
answer = ans["answer"]
|
|
|
|
reasoning_match = re.search(r"<think>(.*?)</think>", answer, flags=re.DOTALL)
|
|
if reasoning_match:
|
|
reasoning_part = reasoning_match.group(1)
|
|
content_part = answer[reasoning_match.end() :]
|
|
else:
|
|
reasoning_part = ""
|
|
content_part = answer
|
|
|
|
reasoning_incremental = ""
|
|
if reasoning_part:
|
|
if reasoning_part.startswith(reasoning_cache):
|
|
reasoning_incremental = reasoning_part.replace(reasoning_cache, "", 1)
|
|
else:
|
|
reasoning_incremental = reasoning_part
|
|
reasoning_cache = reasoning_part
|
|
|
|
content_incremental = ""
|
|
if content_part:
|
|
if content_part.startswith(answer_cache):
|
|
content_incremental = content_part.replace(answer_cache, "", 1)
|
|
else:
|
|
content_incremental = content_part
|
|
answer_cache = content_part
|
|
|
|
token_used += len(reasoning_incremental) + len(content_incremental)
|
|
|
|
if not any([reasoning_incremental, content_incremental]):
|
|
continue
|
|
|
|
if reasoning_incremental:
|
|
response["choices"][0]["delta"]["reasoning_content"] = reasoning_incremental
|
|
else:
|
|
response["choices"][0]["delta"]["reasoning_content"] = None
|
|
|
|
if content_incremental:
|
|
response["choices"][0]["delta"]["content"] = content_incremental
|
|
else:
|
|
response["choices"][0]["delta"]["content"] = None
|
|
|
|
yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
|
|
except Exception as e:
|
|
response["choices"][0]["delta"]["content"] = "**ERROR**: " + str(e)
|
|
yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
|
|
|
|
# The last chunk
|
|
response["choices"][0]["delta"]["content"] = None
|
|
response["choices"][0]["delta"]["reasoning_content"] = None
|
|
response["choices"][0]["finish_reason"] = "stop"
|
|
response["usage"] = {"prompt_tokens": len(prompt), "completion_tokens": token_used, "total_tokens": len(prompt) + token_used}
|
|
if need_reference:
|
|
response["choices"][0]["delta"]["reference"] = chunks_format(last_ans.get("reference", []))
|
|
response["choices"][0]["delta"]["final_content"] = last_ans.get("answer", "")
|
|
yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
|
|
yield "data:[DONE]\n\n"
|
|
|
|
resp = Response(streamed_response_generator(chat_id, dia, msg), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
else:
|
|
answer = None
|
|
for ans in chat(dia, msg, False, toolcall_session=toolcall_session, tools=tools, quote=need_reference):
|
|
# focus answer content only
|
|
answer = ans
|
|
break
|
|
content = answer["answer"]
|
|
|
|
response = {
|
|
"id": f"chatcmpl-{chat_id}",
|
|
"object": "chat.completion",
|
|
"created": int(time.time()),
|
|
"model": req.get("model", ""),
|
|
"usage": {
|
|
"prompt_tokens": len(prompt),
|
|
"completion_tokens": len(content),
|
|
"total_tokens": len(prompt) + len(content),
|
|
"completion_tokens_details": {
|
|
"reasoning_tokens": context_token_used,
|
|
"accepted_prediction_tokens": len(content),
|
|
"rejected_prediction_tokens": 0, # 0 for simplicity
|
|
},
|
|
},
|
|
"choices": [
|
|
{
|
|
"message": {
|
|
"role": "assistant",
|
|
"content": content,
|
|
},
|
|
"logprobs": None,
|
|
"finish_reason": "stop",
|
|
"index": 0,
|
|
}
|
|
],
|
|
}
|
|
if need_reference:
|
|
response["choices"][0]["message"]["reference"] = chunks_format(answer.get("reference", []))
|
|
|
|
return jsonify(response)
|
|
|
|
|
|
@manager.route("/agents_openai/<agent_id>/chat/completions", methods=["POST"]) # noqa: F821
|
|
@validate_request("model", "messages") # noqa: F821
|
|
@token_required
|
|
def agents_completion_openai_compatibility(tenant_id, agent_id):
|
|
req = request.json
|
|
tiktokenenc = tiktoken.get_encoding("cl100k_base")
|
|
messages = req.get("messages", [])
|
|
if not messages:
|
|
return get_error_data_result("You must provide at least one message.")
|
|
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
|
|
return get_error_data_result(f"You don't own the agent {agent_id}")
|
|
|
|
filtered_messages = [m for m in messages if m["role"] in ["user", "assistant"]]
|
|
prompt_tokens = sum(len(tiktokenenc.encode(m["content"])) for m in filtered_messages)
|
|
if not filtered_messages:
|
|
return jsonify(
|
|
get_data_openai(
|
|
id=agent_id,
|
|
content="No valid messages found (user or assistant).",
|
|
finish_reason="stop",
|
|
model=req.get("model", ""),
|
|
completion_tokens=len(tiktokenenc.encode("No valid messages found (user or assistant).")),
|
|
prompt_tokens=prompt_tokens,
|
|
)
|
|
)
|
|
|
|
question = next((m["content"] for m in reversed(messages) if m["role"] == "user"), "")
|
|
|
|
stream = req.pop("stream", False)
|
|
if stream:
|
|
resp = Response(
|
|
completionOpenAI(
|
|
tenant_id,
|
|
agent_id,
|
|
question,
|
|
session_id=req.get("id", req.get("metadata", {}).get("id", "")),
|
|
stream=True,
|
|
**req,
|
|
),
|
|
mimetype="text/event-stream",
|
|
)
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
else:
|
|
# For non-streaming, just return the response directly
|
|
response = next(
|
|
completionOpenAI(
|
|
tenant_id,
|
|
agent_id,
|
|
question,
|
|
session_id=req.get("id", req.get("metadata", {}).get("id", "")),
|
|
stream=False,
|
|
**req,
|
|
)
|
|
)
|
|
return jsonify(response)
|
|
|
|
|
|
@manager.route("/agents/<agent_id>/completions", methods=["POST"]) # noqa: F821
|
|
@token_required
|
|
def agent_completions(tenant_id, agent_id):
|
|
req = request.json
|
|
|
|
|
|
if req.get("stream", True):
|
|
resp = Response(agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
result = {}
|
|
for answer in agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req):
|
|
try:
|
|
ans = json.loads(answer[5:]) # remove "data:"
|
|
if not result:
|
|
result = ans.copy()
|
|
else:
|
|
result["data"]["answer"] += ans["data"]["answer"]
|
|
result["data"]["reference"] = ans["data"].get("reference", [])
|
|
except Exception as e:
|
|
return get_error_data_result(str(e))
|
|
return result
|
|
|
|
|
|
@manager.route("/chats/<chat_id>/sessions", methods=["GET"]) # noqa: F821
|
|
@token_required
|
|
def list_session(tenant_id, chat_id):
|
|
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
|
|
return get_error_data_result(message=f"You don't own the assistant {chat_id}.")
|
|
id = request.args.get("id")
|
|
name = request.args.get("name")
|
|
page_number = int(request.args.get("page", 1))
|
|
items_per_page = int(request.args.get("page_size", 30))
|
|
orderby = request.args.get("orderby", "create_time")
|
|
user_id = request.args.get("user_id")
|
|
if request.args.get("desc") == "False" or request.args.get("desc") == "false":
|
|
desc = False
|
|
else:
|
|
desc = True
|
|
convs = ConversationService.get_list(chat_id, page_number, items_per_page, orderby, desc, id, name, user_id)
|
|
if not convs:
|
|
return get_result(data=[])
|
|
for conv in convs:
|
|
conv["messages"] = conv.pop("message")
|
|
infos = conv["messages"]
|
|
for info in infos:
|
|
if "prompt" in info:
|
|
info.pop("prompt")
|
|
conv["chat_id"] = conv.pop("dialog_id")
|
|
ref_messages = conv["reference"]
|
|
if ref_messages:
|
|
messages = conv["messages"]
|
|
message_num = 0
|
|
ref_num = 0
|
|
while message_num < len(messages) and ref_num < len(ref_messages):
|
|
if messages[message_num]["role"] != "user":
|
|
chunk_list = []
|
|
if "chunks" in ref_messages[ref_num]:
|
|
chunks = ref_messages[ref_num]["chunks"]
|
|
for chunk in chunks:
|
|
new_chunk = {
|
|
"id": chunk.get("chunk_id", chunk.get("id")),
|
|
"content": chunk.get("content_with_weight", chunk.get("content")),
|
|
"document_id": chunk.get("doc_id", chunk.get("document_id")),
|
|
"document_name": chunk.get("docnm_kwd", chunk.get("document_name")),
|
|
"dataset_id": chunk.get("kb_id", chunk.get("dataset_id")),
|
|
"image_id": chunk.get("image_id", chunk.get("img_id")),
|
|
"positions": chunk.get("positions", chunk.get("position_int")),
|
|
}
|
|
|
|
chunk_list.append(new_chunk)
|
|
messages[message_num]["reference"] = chunk_list
|
|
ref_num += 1
|
|
message_num += 1
|
|
del conv["reference"]
|
|
return get_result(data=convs)
|
|
|
|
|
|
@manager.route("/agents/<agent_id>/sessions", methods=["GET"]) # noqa: F821
|
|
@token_required
|
|
def list_agent_session(tenant_id, agent_id):
|
|
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
|
|
return get_error_data_result(message=f"You don't own the agent {agent_id}.")
|
|
id = request.args.get("id")
|
|
user_id = request.args.get("user_id")
|
|
page_number = int(request.args.get("page", 1))
|
|
items_per_page = int(request.args.get("page_size", 30))
|
|
orderby = request.args.get("orderby", "update_time")
|
|
if request.args.get("desc") == "False" or request.args.get("desc") == "false":
|
|
desc = False
|
|
else:
|
|
desc = True
|
|
# dsl defaults to True in all cases except for False and false
|
|
include_dsl = request.args.get("dsl") != "False" and request.args.get("dsl") != "false"
|
|
total, convs = API4ConversationService.get_list(agent_id, tenant_id, page_number, items_per_page, orderby, desc, id, user_id, include_dsl)
|
|
if not convs:
|
|
return get_result(data=[])
|
|
for conv in convs:
|
|
conv["messages"] = conv.pop("message")
|
|
infos = conv["messages"]
|
|
for info in infos:
|
|
if "prompt" in info:
|
|
info.pop("prompt")
|
|
conv["agent_id"] = conv.pop("dialog_id")
|
|
# Fix for session listing endpoint
|
|
if conv["reference"]:
|
|
messages = conv["messages"]
|
|
message_num = 0
|
|
chunk_num = 0
|
|
# Ensure reference is a list type to prevent KeyError
|
|
if not isinstance(conv["reference"], list):
|
|
conv["reference"] = []
|
|
while message_num < len(messages):
|
|
if message_num != 0 and messages[message_num]["role"] != "user":
|
|
chunk_list = []
|
|
# Add boundary and type checks to prevent KeyError
|
|
if (chunk_num < len(conv["reference"]) and
|
|
conv["reference"][chunk_num] is not None and
|
|
isinstance(conv["reference"][chunk_num], dict) and
|
|
"chunks" in conv["reference"][chunk_num]):
|
|
chunks = conv["reference"][chunk_num]["chunks"]
|
|
for chunk in chunks:
|
|
# Ensure chunk is a dictionary before calling get method
|
|
if not isinstance(chunk, dict):
|
|
continue
|
|
new_chunk = {
|
|
"id": chunk.get("chunk_id", chunk.get("id")),
|
|
"content": chunk.get("content_with_weight", chunk.get("content")),
|
|
"document_id": chunk.get("doc_id", chunk.get("document_id")),
|
|
"document_name": chunk.get("docnm_kwd", chunk.get("document_name")),
|
|
"dataset_id": chunk.get("kb_id", chunk.get("dataset_id")),
|
|
"image_id": chunk.get("image_id", chunk.get("img_id")),
|
|
"positions": chunk.get("positions", chunk.get("position_int")),
|
|
}
|
|
chunk_list.append(new_chunk)
|
|
chunk_num += 1
|
|
messages[message_num]["reference"] = chunk_list
|
|
message_num += 1
|
|
del conv["reference"]
|
|
return get_result(data=convs)
|
|
|
|
|
|
@manager.route("/chats/<chat_id>/sessions", methods=["DELETE"]) # noqa: F821
|
|
@token_required
|
|
def delete(tenant_id, chat_id):
|
|
if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
|
|
return get_error_data_result(message="You don't own the chat")
|
|
|
|
errors = []
|
|
success_count = 0
|
|
req = request.json
|
|
convs = ConversationService.query(dialog_id=chat_id)
|
|
if not req:
|
|
ids = None
|
|
else:
|
|
ids = req.get("ids")
|
|
|
|
if not ids:
|
|
conv_list = []
|
|
for conv in convs:
|
|
conv_list.append(conv.id)
|
|
else:
|
|
conv_list = ids
|
|
|
|
unique_conv_ids, duplicate_messages = check_duplicate_ids(conv_list, "session")
|
|
conv_list = unique_conv_ids
|
|
|
|
for id in conv_list:
|
|
conv = ConversationService.query(id=id, dialog_id=chat_id)
|
|
if not conv:
|
|
errors.append(f"The chat doesn't own the session {id}")
|
|
continue
|
|
ConversationService.delete_by_id(id)
|
|
success_count += 1
|
|
|
|
if errors:
|
|
if success_count > 0:
|
|
return get_result(data={"success_count": success_count, "errors": errors}, message=f"Partially deleted {success_count} sessions with {len(errors)} errors")
|
|
else:
|
|
return get_error_data_result(message="; ".join(errors))
|
|
|
|
if duplicate_messages:
|
|
if success_count > 0:
|
|
return get_result(message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages})
|
|
else:
|
|
return get_error_data_result(message=";".join(duplicate_messages))
|
|
|
|
return get_result()
|
|
|
|
|
|
@manager.route("/agents/<agent_id>/sessions", methods=["DELETE"]) # noqa: F821
|
|
@token_required
|
|
def delete_agent_session(tenant_id, agent_id):
|
|
errors = []
|
|
success_count = 0
|
|
req = request.json
|
|
cvs = UserCanvasService.query(user_id=tenant_id, id=agent_id)
|
|
if not cvs:
|
|
return get_error_data_result(f"You don't own the agent {agent_id}")
|
|
|
|
convs = API4ConversationService.query(dialog_id=agent_id)
|
|
if not convs:
|
|
return get_error_data_result(f"Agent {agent_id} has no sessions")
|
|
|
|
if not req:
|
|
ids = None
|
|
else:
|
|
ids = req.get("ids")
|
|
|
|
if not ids:
|
|
conv_list = []
|
|
for conv in convs:
|
|
conv_list.append(conv.id)
|
|
else:
|
|
conv_list = ids
|
|
|
|
unique_conv_ids, duplicate_messages = check_duplicate_ids(conv_list, "session")
|
|
conv_list = unique_conv_ids
|
|
|
|
for session_id in conv_list:
|
|
conv = API4ConversationService.query(id=session_id, dialog_id=agent_id)
|
|
if not conv:
|
|
errors.append(f"The agent doesn't own the session {session_id}")
|
|
continue
|
|
API4ConversationService.delete_by_id(session_id)
|
|
success_count += 1
|
|
|
|
if errors:
|
|
if success_count > 0:
|
|
return get_result(data={"success_count": success_count, "errors": errors}, message=f"Partially deleted {success_count} sessions with {len(errors)} errors")
|
|
else:
|
|
return get_error_data_result(message="; ".join(errors))
|
|
|
|
if duplicate_messages:
|
|
if success_count > 0:
|
|
return get_result(message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages})
|
|
else:
|
|
return get_error_data_result(message=";".join(duplicate_messages))
|
|
|
|
return get_result()
|
|
|
|
|
|
@manager.route("/sessions/ask", methods=["POST"]) # noqa: F821
|
|
@token_required
|
|
def ask_about(tenant_id):
|
|
req = request.json
|
|
if not req.get("question"):
|
|
return get_error_data_result("`question` is required.")
|
|
if not req.get("dataset_ids"):
|
|
return get_error_data_result("`dataset_ids` is required.")
|
|
if not isinstance(req.get("dataset_ids"), list):
|
|
return get_error_data_result("`dataset_ids` should be a list.")
|
|
req["kb_ids"] = req.pop("dataset_ids")
|
|
for kb_id in req["kb_ids"]:
|
|
if not KnowledgebaseService.accessible(kb_id, tenant_id):
|
|
return get_error_data_result(f"You don't own the dataset {kb_id}.")
|
|
kbs = KnowledgebaseService.query(id=kb_id)
|
|
kb = kbs[0]
|
|
if kb.chunk_num == 0:
|
|
return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
|
|
uid = tenant_id
|
|
|
|
def stream():
|
|
nonlocal req, uid
|
|
try:
|
|
for ans in ask(req["question"], req["kb_ids"], uid):
|
|
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
|
|
except Exception as e:
|
|
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
|
|
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
|
|
|
|
resp = Response(stream(), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
|
|
|
|
@manager.route("/sessions/related_questions", methods=["POST"]) # noqa: F821
|
|
@token_required
|
|
def related_questions(tenant_id):
|
|
req = request.json
|
|
if not req.get("question"):
|
|
return get_error_data_result("`question` is required.")
|
|
question = req["question"]
|
|
industry = req.get("industry", "")
|
|
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
|
|
prompt = """
|
|
Objective: To generate search terms related to the user's search keywords, helping users find more valuable information.
|
|
Instructions:
|
|
- Based on the keywords provided by the user, generate 5-10 related search terms.
|
|
- Each search term should be directly or indirectly related to the keyword, guiding the user to find more valuable information.
|
|
- Use common, general terms as much as possible, avoiding obscure words or technical jargon.
|
|
- Keep the term length between 2-4 words, concise and clear.
|
|
- DO NOT translate, use the language of the original keywords.
|
|
"""
|
|
if industry:
|
|
prompt += f" - Ensure all search terms are relevant to the industry: {industry}.\n"
|
|
prompt += """
|
|
### Example:
|
|
Keywords: Chinese football
|
|
Related search terms:
|
|
1. Current status of Chinese football
|
|
2. Reform of Chinese football
|
|
3. Youth training of Chinese football
|
|
4. Chinese football in the Asian Cup
|
|
5. Chinese football in the World Cup
|
|
|
|
Reason:
|
|
- When searching, users often only use one or two keywords, making it difficult to fully express their information needs.
|
|
- Generating related search terms can help users dig deeper into relevant information and improve search efficiency.
|
|
- At the same time, related terms can also help search engines better understand user needs and return more accurate search results.
|
|
|
|
"""
|
|
ans = chat_mdl.chat(
|
|
prompt,
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": f"""
|
|
Keywords: {question}
|
|
Related search terms:
|
|
""",
|
|
}
|
|
],
|
|
{"temperature": 0.9},
|
|
)
|
|
return get_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])
|
|
|
|
|
|
@manager.route("/chatbots/<dialog_id>/completions", methods=["POST"]) # noqa: F821
|
|
def chatbot_completions(dialog_id):
|
|
req = request.json
|
|
|
|
token = request.headers.get("Authorization").split()
|
|
if len(token) != 2:
|
|
return get_error_data_result(message='Authorization is not valid!"')
|
|
token = token[1]
|
|
objs = APIToken.query(beta=token)
|
|
if not objs:
|
|
return get_error_data_result(message='Authentication error: API key is invalid!"')
|
|
|
|
if "quote" not in req:
|
|
req["quote"] = False
|
|
|
|
if req.get("stream", True):
|
|
resp = Response(iframe_completion(dialog_id, **req), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
|
|
for answer in iframe_completion(dialog_id, **req):
|
|
return get_result(data=answer)
|
|
|
|
|
|
@manager.route("/chatbots/<dialog_id>/info", methods=["GET"]) # noqa: F821
|
|
def chatbots_inputs(dialog_id):
|
|
token = request.headers.get("Authorization").split()
|
|
if len(token) != 2:
|
|
return get_error_data_result(message='Authorization is not valid!"')
|
|
token = token[1]
|
|
objs = APIToken.query(beta=token)
|
|
if not objs:
|
|
return get_error_data_result(message='Authentication error: API key is invalid!"')
|
|
|
|
e, dialog = DialogService.get_by_id(dialog_id)
|
|
if not e:
|
|
return get_error_data_result(f"Can't find dialog by ID: {dialog_id}")
|
|
|
|
return get_result(
|
|
data={
|
|
"title": dialog.name,
|
|
"avatar": dialog.icon,
|
|
"prologue": dialog.prompt_config.get("prologue", ""),
|
|
}
|
|
)
|
|
|
|
|
|
@manager.route("/agentbots/<agent_id>/completions", methods=["POST"]) # noqa: F821
|
|
def agent_bot_completions(agent_id):
|
|
req = request.json
|
|
|
|
token = request.headers.get("Authorization").split()
|
|
if len(token) != 2:
|
|
return get_error_data_result(message='Authorization is not valid!"')
|
|
token = token[1]
|
|
objs = APIToken.query(beta=token)
|
|
if not objs:
|
|
return get_error_data_result(message='Authentication error: API key is invalid!"')
|
|
|
|
if req.get("stream", True):
|
|
resp = Response(agent_completion(objs[0].tenant_id, agent_id, **req), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
|
|
for answer in agent_completion(objs[0].tenant_id, agent_id, **req):
|
|
return get_result(data=answer)
|
|
|
|
|
|
@manager.route("/agentbots/<agent_id>/inputs", methods=["GET"]) # noqa: F821
|
|
def begin_inputs(agent_id):
|
|
token = request.headers.get("Authorization").split()
|
|
if len(token) != 2:
|
|
return get_error_data_result(message='Authorization is not valid!"')
|
|
token = token[1]
|
|
objs = APIToken.query(beta=token)
|
|
if not objs:
|
|
return get_error_data_result(message='Authentication error: API key is invalid!"')
|
|
|
|
e, cvs = UserCanvasService.get_by_id(agent_id)
|
|
if not e:
|
|
return get_error_data_result(f"Can't find agent by ID: {agent_id}")
|
|
|
|
canvas = Canvas(json.dumps(cvs.dsl), objs[0].tenant_id)
|
|
return get_result(
|
|
data={
|
|
"title": cvs.title,
|
|
"avatar": cvs.avatar,
|
|
"inputs": canvas.get_component_input_form("begin"),
|
|
"prologue": canvas.get_prologue()
|
|
}
|
|
)
|
|
|
|
|
|
@manager.route("/searchbots/ask", methods=["POST"]) # noqa: F821
|
|
@validate_request("question", "kb_ids")
|
|
def ask_about_embedded():
|
|
token = request.headers.get("Authorization").split()
|
|
if len(token) != 2:
|
|
return get_error_data_result(message='Authorization is not valid!"')
|
|
token = token[1]
|
|
objs = APIToken.query(beta=token)
|
|
if not objs:
|
|
return get_error_data_result(message='Authentication error: API key is invalid!"')
|
|
|
|
req = request.json
|
|
uid = objs[0].tenant_id
|
|
|
|
search_id = req.get("search_id", "")
|
|
search_config = {}
|
|
if search_id:
|
|
if search_app := SearchService.get_detail(search_id):
|
|
search_config = search_app.get("search_config", {})
|
|
|
|
def stream():
|
|
nonlocal req, uid
|
|
try:
|
|
for ans in ask(req["question"], req["kb_ids"], uid, search_config=search_config):
|
|
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
|
|
except Exception as e:
|
|
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
|
|
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
|
|
|
|
resp = Response(stream(), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
|
|
|
|
@manager.route("/searchbots/retrieval_test", methods=['POST']) # noqa: F821
|
|
@validate_request("kb_id", "question")
|
|
def retrieval_test_embedded():
|
|
token = request.headers.get("Authorization").split()
|
|
if len(token) != 2:
|
|
return get_error_data_result(message='Authorization is not valid!"')
|
|
token = token[1]
|
|
objs = APIToken.query(beta=token)
|
|
if not objs:
|
|
return get_error_data_result(message='Authentication error: API key is invalid!"')
|
|
|
|
req = request.json
|
|
page = int(req.get("page", 1))
|
|
size = int(req.get("size", 30))
|
|
question = req["question"]
|
|
kb_ids = req["kb_id"]
|
|
if isinstance(kb_ids, str):
|
|
kb_ids = [kb_ids]
|
|
doc_ids = req.get("doc_ids", [])
|
|
similarity_threshold = float(req.get("similarity_threshold", 0.0))
|
|
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
|
|
use_kg = req.get("use_kg", False)
|
|
top = int(req.get("top_k", 1024))
|
|
langs = req.get("cross_languages", [])
|
|
tenant_ids = []
|
|
|
|
tenant_id = objs[0].tenant_id
|
|
if not tenant_id:
|
|
return get_error_data_result(message="permission denined.")
|
|
|
|
try:
|
|
tenants = UserTenantService.query(user_id=tenant_id)
|
|
for kb_id in kb_ids:
|
|
for tenant in tenants:
|
|
if KnowledgebaseService.query(
|
|
tenant_id=tenant.tenant_id, id=kb_id):
|
|
tenant_ids.append(tenant.tenant_id)
|
|
break
|
|
else:
|
|
return get_json_result(
|
|
data=False, message='Only owner of knowledgebase authorized for this operation.',
|
|
code=settings.RetCode.OPERATING_ERROR)
|
|
|
|
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
|
|
if not e:
|
|
return get_error_data_result(message="Knowledgebase not found!")
|
|
|
|
if langs:
|
|
question = cross_languages(kb.tenant_id, None, question, langs)
|
|
|
|
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
|
|
|
|
rerank_mdl = None
|
|
if req.get("rerank_id"):
|
|
rerank_mdl = LLMBundle(kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
|
|
|
|
if req.get("keyword", False):
|
|
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
|
|
question += keyword_extraction(chat_mdl, question)
|
|
|
|
labels = label_question(question, [kb])
|
|
ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
|
|
similarity_threshold, vector_similarity_weight, top,
|
|
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"),
|
|
rank_feature=labels
|
|
)
|
|
if use_kg:
|
|
ck = settings.kg_retrievaler.retrieval(question,
|
|
tenant_ids,
|
|
kb_ids,
|
|
embd_mdl,
|
|
LLMBundle(kb.tenant_id, LLMType.CHAT))
|
|
if ck["content_with_weight"]:
|
|
ranks["chunks"].insert(0, ck)
|
|
|
|
for c in ranks["chunks"]:
|
|
c.pop("vector", None)
|
|
ranks["labels"] = labels
|
|
|
|
return get_json_result(data=ranks)
|
|
except Exception as e:
|
|
if str(e).find("not_found") > 0:
|
|
return get_json_result(data=False, message='No chunk found! Check the chunk status please!',
|
|
code=settings.RetCode.DATA_ERROR)
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route("/searchbots/related_questions", methods=["POST"]) # noqa: F821
|
|
@validate_request("question")
|
|
def related_questions_embedded():
|
|
token = request.headers.get("Authorization").split()
|
|
if len(token) != 2:
|
|
return get_error_data_result(message='Authorization is not valid!"')
|
|
token = token[1]
|
|
objs = APIToken.query(beta=token)
|
|
if not objs:
|
|
return get_error_data_result(message='Authentication error: API key is invalid!"')
|
|
|
|
req = request.json
|
|
tenant_id = objs[0].tenant_id
|
|
if not tenant_id:
|
|
return get_error_data_result(message="permission denined.")
|
|
|
|
search_id = req.get("search_id", "")
|
|
search_config = {}
|
|
if search_id:
|
|
if search_app := SearchService.get_detail(search_id):
|
|
search_config = search_app.get("search_config", {})
|
|
|
|
question = req["question"]
|
|
|
|
chat_id = search_config.get("chat_id", "")
|
|
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, chat_id)
|
|
|
|
gen_conf = search_config.get("llm_setting", {"temperature": 0.9})
|
|
prompt = load_prompt("related_question")
|
|
ans = chat_mdl.chat(
|
|
prompt,
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": f"""
|
|
Keywords: {question}
|
|
Related search terms:
|
|
""",
|
|
}
|
|
],
|
|
gen_conf,
|
|
)
|
|
return get_json_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])
|
|
|
|
|
|
@manager.route("/searchbots/detail", methods=["GET"]) # noqa: F821
|
|
def detail_share_embedded():
|
|
token = request.headers.get("Authorization").split()
|
|
if len(token) != 2:
|
|
return get_error_data_result(message='Authorization is not valid!"')
|
|
token = token[1]
|
|
objs = APIToken.query(beta=token)
|
|
if not objs:
|
|
return get_error_data_result(message='Authentication error: API key is invalid!"')
|
|
|
|
search_id = request.args["search_id"]
|
|
tenant_id = objs[0].tenant_id
|
|
if not tenant_id:
|
|
return get_error_data_result(message="permission denined.")
|
|
try:
|
|
tenants = UserTenantService.query(user_id=tenant_id)
|
|
for tenant in tenants:
|
|
if SearchService.query(tenant_id=tenant.tenant_id, id=search_id):
|
|
break
|
|
else:
|
|
return get_json_result(data=False, message="Has no permission for this operation.", code=settings.RetCode.OPERATING_ERROR)
|
|
|
|
search = SearchService.get_detail(search_id)
|
|
if not search:
|
|
return get_error_data_result(message="Can't find this Search App!")
|
|
return get_json_result(data=search)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route("/searchbots/mindmap", methods=["POST"]) # noqa: F821
|
|
@validate_request("question", "kb_ids")
|
|
def mindmap():
|
|
token = request.headers.get("Authorization").split()
|
|
if len(token) != 2:
|
|
return get_error_data_result(message='Authorization is not valid!"')
|
|
token = token[1]
|
|
objs = APIToken.query(beta=token)
|
|
if not objs:
|
|
return get_error_data_result(message='Authentication error: API key is invalid!"')
|
|
|
|
tenant_id = objs[0].tenant_id
|
|
req = request.json
|
|
|
|
search_id = req.get("search_id", "")
|
|
search_app = SearchService.get_detail(search_id) if search_id else {}
|
|
|
|
mind_map = gen_mindmap(req["question"], req["kb_ids"], tenant_id, search_app.get("search_config", {}))
|
|
if "error" in mind_map:
|
|
return server_error_response(Exception(mind_map["error"]))
|
|
return get_json_result(data=mind_map)
|