mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-11-04 03:39:41 +00:00 
			
		
		
		
	### What problem does this PR solve? #1594 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
		
			
				
	
	
		
			81 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			81 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
#  Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
#  you may not use this file except in compliance with the License.
 | 
						|
#  You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#      http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
#  Unless required by applicable law or agreed to in writing, software
 | 
						|
#  distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
#  See the License for the specific language governing permissions and
 | 
						|
#  limitations under the License.
 | 
						|
#
 | 
						|
from abc import ABC
 | 
						|
from api.db import LLMType
 | 
						|
from api.db.services.llm_service import LLMBundle
 | 
						|
from agent.component import GenerateParam, Generate
 | 
						|
from rag.utils import num_tokens_from_string, encoder
 | 
						|
 | 
						|
 | 
						|
class RelevantParam(GenerateParam):
 | 
						|
 | 
						|
    """
 | 
						|
    Define the Relevant component parameters.
 | 
						|
    """
 | 
						|
    def __init__(self):
 | 
						|
        super().__init__()
 | 
						|
        self.prompt = ""
 | 
						|
        self.yes = ""
 | 
						|
        self.no = ""
 | 
						|
 | 
						|
    def check(self):
 | 
						|
        super().check()
 | 
						|
        self.check_empty(self.yes, "[Relevant] 'Yes'")
 | 
						|
        self.check_empty(self.no, "[Relevant] 'No'")
 | 
						|
 | 
						|
    def get_prompt(self):
 | 
						|
        self.prompt = """
 | 
						|
        You are a grader assessing relevance of a retrieved document to a user question. 
 | 
						|
        It does not need to be a stringent test. The goal is to filter out erroneous retrievals.
 | 
						|
        If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. 
 | 
						|
        Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.
 | 
						|
        No other words needed except 'yes' or 'no'.
 | 
						|
        """
 | 
						|
        return self.prompt
 | 
						|
 | 
						|
 | 
						|
class Relevant(Generate, ABC):
 | 
						|
    component_name = "Relevant"
 | 
						|
 | 
						|
    def _run(self, history, **kwargs):
 | 
						|
        q = ""
 | 
						|
        for r, c in self._canvas.history[::-1]:
 | 
						|
            if r == "user":
 | 
						|
                q = c
 | 
						|
                break
 | 
						|
        ans = self.get_input()
 | 
						|
        ans = " - ".join(ans["content"]) if "content" in ans else ""
 | 
						|
        if not ans:
 | 
						|
            return Relevant.be_output(self._param.no)
 | 
						|
        ans = "Documents: \n" + ans
 | 
						|
        ans = f"Question: {q}\n" + ans
 | 
						|
        chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
 | 
						|
 | 
						|
        if num_tokens_from_string(ans) >= chat_mdl.max_length - 4:
 | 
						|
            ans = encoder.decode(encoder.encode(ans)[:chat_mdl.max_length - 4])
 | 
						|
 | 
						|
        ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": ans}],
 | 
						|
                            self._param.gen_conf())
 | 
						|
 | 
						|
        print(ans, ":::::::::::::::::::::::::::::::::")
 | 
						|
        if ans.lower().find("yes") >= 0:
 | 
						|
            return Relevant.be_output(self._param.yes)
 | 
						|
        if ans.lower().find("no") >= 0:
 | 
						|
            return Relevant.be_output(self._param.no)
 | 
						|
        assert False, f"Relevant component got: {ans}"
 | 
						|
 | 
						|
 |