mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-10-31 09:50:00 +00:00 
			
		
		
		
	 a008b38cf5
			
		
	
	
		a008b38cf5
		
			
		
	
	
	
	
		
			
			### What problem does this PR solve? Fix: local variable referenced before assignment. #6803 ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
		
			
				
	
	
		
			2004 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			2004 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #
 | |
| #  Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
 | |
| #
 | |
| #  Licensed under the Apache License, Version 2.0 (the "License");
 | |
| #  you may not use this file except in compliance with the License.
 | |
| #  You may obtain a copy of the License at
 | |
| #
 | |
| #      http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| #  Unless required by applicable law or agreed to in writing, software
 | |
| #  distributed under the License is distributed on an "AS IS" BASIS,
 | |
| #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| #  See the License for the specific language governing permissions and
 | |
| #  limitations under the License.
 | |
| #
 | |
| import asyncio
 | |
| import json
 | |
| import logging
 | |
| import os
 | |
| import random
 | |
| import re
 | |
| import time
 | |
| from abc import ABC
 | |
| 
 | |
| import openai
 | |
| import requests
 | |
| from dashscope import Generation
 | |
| from ollama import Client
 | |
| from openai import OpenAI
 | |
| from openai.lib.azure import AzureOpenAI
 | |
| from zhipuai import ZhipuAI
 | |
| 
 | |
| from rag.nlp import is_chinese, is_english
 | |
| from rag.utils import num_tokens_from_string
 | |
| 
 | |
| # Error message constants
 | |
| ERROR_PREFIX = "**ERROR**"
 | |
| ERROR_RATE_LIMIT = "RATE_LIMIT_EXCEEDED"
 | |
| ERROR_AUTHENTICATION = "AUTH_ERROR"
 | |
| ERROR_INVALID_REQUEST = "INVALID_REQUEST"
 | |
| ERROR_SERVER = "SERVER_ERROR"
 | |
| ERROR_TIMEOUT = "TIMEOUT"
 | |
| ERROR_CONNECTION = "CONNECTION_ERROR"
 | |
| ERROR_MODEL = "MODEL_ERROR"
 | |
| ERROR_CONTENT_FILTER = "CONTENT_FILTERED"
 | |
| ERROR_QUOTA = "QUOTA_EXCEEDED"
 | |
| ERROR_MAX_RETRIES = "MAX_RETRIES_EXCEEDED"
 | |
| ERROR_GENERIC = "GENERIC_ERROR"
 | |
| 
 | |
| LENGTH_NOTIFICATION_CN = "······\n由于大模型的上下文窗口大小限制,回答已经被大模型截断。"
 | |
| LENGTH_NOTIFICATION_EN = "...\nThe answer is truncated by your chosen LLM due to its limitation on context length."
 | |
| 
 | |
| 
 | |
| class Base(ABC):
 | |
|     def __init__(self, key, model_name, base_url):
 | |
|         timeout = int(os.environ.get("LM_TIMEOUT_SECONDS", 600))
 | |
|         self.client = OpenAI(api_key=key, base_url=base_url, timeout=timeout)
 | |
|         self.model_name = model_name
 | |
|         # Configure retry parameters
 | |
|         self.max_retries = int(os.environ.get("LLM_MAX_RETRIES", 5))
 | |
|         self.base_delay = float(os.environ.get("LLM_BASE_DELAY", 2.0))
 | |
|         self.is_tools = False
 | |
| 
 | |
|     def _get_delay(self, attempt):
 | |
|         """Calculate retry delay time"""
 | |
|         return self.base_delay * (2**attempt) + random.uniform(0, 0.5)
 | |
| 
 | |
|     def _classify_error(self, error):
 | |
|         """Classify error based on error message content"""
 | |
|         error_str = str(error).lower()
 | |
| 
 | |
|         if "rate limit" in error_str or "429" in error_str or "tpm limit" in error_str or "too many requests" in error_str or "requests per minute" in error_str:
 | |
|             return ERROR_RATE_LIMIT
 | |
|         elif "auth" in error_str or "key" in error_str or "apikey" in error_str or "401" in error_str or "forbidden" in error_str or "permission" in error_str:
 | |
|             return ERROR_AUTHENTICATION
 | |
|         elif "invalid" in error_str or "bad request" in error_str or "400" in error_str or "format" in error_str or "malformed" in error_str or "parameter" in error_str:
 | |
|             return ERROR_INVALID_REQUEST
 | |
|         elif "server" in error_str or "502" in error_str or "503" in error_str or "504" in error_str or "500" in error_str or "unavailable" in error_str:
 | |
|             return ERROR_SERVER
 | |
|         elif "timeout" in error_str or "timed out" in error_str:
 | |
|             return ERROR_TIMEOUT
 | |
|         elif "connect" in error_str or "network" in error_str or "unreachable" in error_str or "dns" in error_str:
 | |
|             return ERROR_CONNECTION
 | |
|         elif "quota" in error_str or "capacity" in error_str or "credit" in error_str or "billing" in error_str or "limit" in error_str and "rate" not in error_str:
 | |
|             return ERROR_QUOTA
 | |
|         elif "filter" in error_str or "content" in error_str or "policy" in error_str or "blocked" in error_str or "safety" in error_str or "inappropriate" in error_str:
 | |
|             return ERROR_CONTENT_FILTER
 | |
|         elif "model" in error_str or "not found" in error_str or "does not exist" in error_str or "not available" in error_str:
 | |
|             return ERROR_MODEL
 | |
|         else:
 | |
|             return ERROR_GENERIC
 | |
| 
 | |
|     def bind_tools(self, toolcall_session, tools):
 | |
|         if not (toolcall_session and tools):
 | |
|             return
 | |
|         self.is_tools = True
 | |
|         self.toolcall_session = toolcall_session
 | |
|         self.tools = tools
 | |
| 
 | |
|     def chat_with_tools(self, system: str, history: list, gen_conf: dict):
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
| 
 | |
|         tools = self.tools
 | |
| 
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
| 
 | |
|         ans = ""
 | |
|         tk_count = 0
 | |
|         # Implement exponential backoff retry strategy
 | |
|         for attempt in range(self.max_retries):
 | |
|             try:
 | |
|                 response = self.client.chat.completions.create(model=self.model_name, messages=history, tools=tools, **gen_conf)
 | |
| 
 | |
|                 assistant_output = response.choices[0].message
 | |
|                 if not ans and "tool_calls" not in assistant_output and "reasoning_content" in assistant_output:
 | |
|                     ans += "<think>" + ans + "</think>"
 | |
|                 ans += response.choices[0].message.content
 | |
| 
 | |
|                 if not response.choices[0].message.tool_calls:
 | |
|                     tk_count += self.total_token_count(response)
 | |
|                     if response.choices[0].finish_reason == "length":
 | |
|                         if is_chinese([ans]):
 | |
|                             ans += LENGTH_NOTIFICATION_CN
 | |
|                         else:
 | |
|                             ans += LENGTH_NOTIFICATION_EN
 | |
|                     return ans, tk_count
 | |
| 
 | |
|                 tk_count += self.total_token_count(response)
 | |
|                 history.append(assistant_output)
 | |
| 
 | |
|                 for tool_call in response.choices[0].message.tool_calls:
 | |
|                     name = tool_call.function.name
 | |
|                     args = json.loads(tool_call.function.arguments)
 | |
| 
 | |
|                     tool_response = self.toolcall_session.tool_call(name, args)
 | |
|                     # if tool_response.choices[0].finish_reason == "length":
 | |
|                     #     if is_chinese(ans):
 | |
|                     #         ans += LENGTH_NOTIFICATION_CN
 | |
|                     #     else:
 | |
|                     #         ans += LENGTH_NOTIFICATION_EN
 | |
|                     #     return ans, tk_count + self.total_token_count(tool_response)
 | |
|                     history.append({"role": "tool", "tool_call_id": tool_call.id, "content": str(tool_response)})
 | |
| 
 | |
|                 final_response = self.client.chat.completions.create(model=self.model_name, messages=history, tools=tools, **gen_conf)
 | |
|                 assistant_output = final_response.choices[0].message
 | |
|                 if "tool_calls" not in assistant_output and "reasoning_content" in assistant_output:
 | |
|                     ans += "<think>" + ans + "</think>"
 | |
|                 ans += final_response.choices[0].message.content
 | |
|                 if final_response.choices[0].finish_reason == "length":
 | |
|                     tk_count += self.total_token_count(response)
 | |
|                     if is_chinese([ans]):
 | |
|                         ans += LENGTH_NOTIFICATION_CN
 | |
|                     else:
 | |
|                         ans += LENGTH_NOTIFICATION_EN
 | |
|                     return ans, tk_count
 | |
|                 return ans, tk_count
 | |
| 
 | |
|             except Exception as e:
 | |
|                 logging.exception("OpenAI cat_with_tools")
 | |
|                 # Classify the error
 | |
|                 error_code = self._classify_error(e)
 | |
| 
 | |
|                 # Check if it's a rate limit error or server error and not the last attempt
 | |
|                 should_retry = (error_code == ERROR_RATE_LIMIT or error_code == ERROR_SERVER) and attempt < self.max_retries - 1
 | |
| 
 | |
|                 if should_retry:
 | |
|                     delay = self._get_delay(attempt)
 | |
|                     logging.warning(f"Error: {error_code}. Retrying in {delay:.2f} seconds... (Attempt {attempt + 1}/{self.max_retries})")
 | |
|                     time.sleep(delay)
 | |
|                 else:
 | |
|                     # For non-rate limit errors or the last attempt, return an error message
 | |
|                     if attempt == self.max_retries - 1:
 | |
|                         error_code = ERROR_MAX_RETRIES
 | |
|                     return f"{ERROR_PREFIX}: {error_code} - {str(e)}", 0
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
| 
 | |
|         # Implement exponential backoff retry strategy
 | |
|         for attempt in range(self.max_retries):
 | |
|             try:
 | |
|                 response = self.client.chat.completions.create(model=self.model_name, messages=history, **gen_conf)
 | |
| 
 | |
|                 if any([not response.choices, not response.choices[0].message, not response.choices[0].message.content]):
 | |
|                     return "", 0
 | |
|                 ans = response.choices[0].message.content.strip()
 | |
|                 if response.choices[0].finish_reason == "length":
 | |
|                     if is_chinese(ans):
 | |
|                         ans += LENGTH_NOTIFICATION_CN
 | |
|                     else:
 | |
|                         ans += LENGTH_NOTIFICATION_EN
 | |
|                 return ans, self.total_token_count(response)
 | |
|             except Exception as e:
 | |
|                 logging.exception("chat_model.Base.chat got exception")
 | |
|                 # Classify the error
 | |
|                 error_code = self._classify_error(e)
 | |
| 
 | |
|                 # Check if it's a rate limit error or server error and not the last attempt
 | |
|                 should_retry = (error_code == ERROR_RATE_LIMIT or error_code == ERROR_SERVER) and attempt < self.max_retries - 1
 | |
| 
 | |
|                 if should_retry:
 | |
|                     delay = self._get_delay(attempt)
 | |
|                     logging.warning(f"Error: {error_code}. Retrying in {delay:.2f} seconds... (Attempt {attempt + 1}/{self.max_retries})")
 | |
|                     time.sleep(delay)
 | |
|                 else:
 | |
|                     # For non-rate limit errors or the last attempt, return an error message
 | |
|                     if attempt == self.max_retries - 1:
 | |
|                         error_code = ERROR_MAX_RETRIES
 | |
|                     return f"{ERROR_PREFIX}: {error_code} - {str(e)}", 0
 | |
| 
 | |
|     def _wrap_toolcall_message(self, stream):
 | |
|         final_tool_calls = {}
 | |
| 
 | |
|         for chunk in stream:
 | |
|             for tool_call in chunk.choices[0].delta.tool_calls or []:
 | |
|                 index = tool_call.index
 | |
| 
 | |
|                 if index not in final_tool_calls:
 | |
|                     final_tool_calls[index] = tool_call
 | |
| 
 | |
|                 final_tool_calls[index].function.arguments += tool_call.function.arguments
 | |
| 
 | |
|         return final_tool_calls
 | |
| 
 | |
|     def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict):
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
| 
 | |
|         tools = self.tools
 | |
| 
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
| 
 | |
|         ans = ""
 | |
|         total_tokens = 0
 | |
|         reasoning_start = False
 | |
|         finish_completion = False
 | |
|         final_tool_calls = {}
 | |
|         try:
 | |
|             response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, tools=tools, **gen_conf)
 | |
|             while not finish_completion:
 | |
|                 for resp in response:
 | |
|                     if resp.choices[0].delta.tool_calls:
 | |
|                         for tool_call in resp.choices[0].delta.tool_calls or []:
 | |
|                             index = tool_call.index
 | |
| 
 | |
|                             if index not in final_tool_calls:
 | |
|                                 final_tool_calls[index] = tool_call
 | |
| 
 | |
|                             final_tool_calls[index].function.arguments += tool_call.function.arguments
 | |
|                         if resp.choices[0].finish_reason != "stop":
 | |
|                             continue
 | |
|                     else:
 | |
|                         if not resp.choices:
 | |
|                             continue
 | |
|                         if not resp.choices[0].delta.content:
 | |
|                             resp.choices[0].delta.content = ""
 | |
|                         if hasattr(resp.choices[0].delta, "reasoning_content") and resp.choices[0].delta.reasoning_content:
 | |
|                             ans = ""
 | |
|                             if not reasoning_start:
 | |
|                                 reasoning_start = True
 | |
|                                 ans = "<think>"
 | |
|                             ans += resp.choices[0].delta.reasoning_content + "</think>"
 | |
|                         else:
 | |
|                             reasoning_start = False
 | |
|                             ans = resp.choices[0].delta.content
 | |
| 
 | |
|                         tol = self.total_token_count(resp)
 | |
|                         if not tol:
 | |
|                             total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
 | |
|                         else:
 | |
|                             total_tokens += tol
 | |
| 
 | |
|                         finish_reason = resp.choices[0].finish_reason
 | |
|                         if finish_reason == "tool_calls" and final_tool_calls:
 | |
|                             for tool_call in final_tool_calls.values():
 | |
|                                 name = tool_call.function.name
 | |
|                                 try:
 | |
|                                     if name == "get_current_weather":
 | |
|                                         args = json.loads('{"location":"Shanghai"}')
 | |
|                                     else:
 | |
|                                         args = json.loads(tool_call.function.arguments)
 | |
|                                 except Exception:
 | |
|                                     continue
 | |
|                                 # args = json.loads(tool_call.function.arguments)
 | |
|                                 tool_response = self.toolcall_session.tool_call(name, args)
 | |
|                                 history.append(
 | |
|                                     {
 | |
|                                         "role": "assistant",
 | |
|                                         "refusal": "",
 | |
|                                         "content": "",
 | |
|                                         "audio": "",
 | |
|                                         "function_call": "",
 | |
|                                         "tool_calls": [
 | |
|                                             {
 | |
|                                                 "index": tool_call.index,
 | |
|                                                 "id": tool_call.id,
 | |
|                                                 "function": tool_call.function,
 | |
|                                                 "type": "function",
 | |
|                                             },
 | |
|                                         ],
 | |
|                                     }
 | |
|                                 )
 | |
|                                 # if tool_response.choices[0].finish_reason == "length":
 | |
|                                 #     if is_chinese(ans):
 | |
|                                 #         ans += LENGTH_NOTIFICATION_CN
 | |
|                                 #     else:
 | |
|                                 #         ans += LENGTH_NOTIFICATION_EN
 | |
|                                 #     return ans, total_tokens + self.total_token_count(tool_response)
 | |
|                                 history.append({"role": "tool", "tool_call_id": tool_call.id, "content": str(tool_response)})
 | |
|                             final_tool_calls = {}
 | |
|                             response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, tools=tools, **gen_conf)
 | |
|                             continue
 | |
|                         if finish_reason == "length":
 | |
|                             if is_chinese(ans):
 | |
|                                 ans += LENGTH_NOTIFICATION_CN
 | |
|                             else:
 | |
|                                 ans += LENGTH_NOTIFICATION_EN
 | |
|                             return ans, total_tokens + self.total_token_count(resp)
 | |
|                         if finish_reason == "stop":
 | |
|                             finish_completion = True
 | |
|                             yield ans
 | |
|                             break
 | |
|                         yield ans
 | |
|                         continue
 | |
| 
 | |
|         except openai.APIError as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield total_tokens
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
|         ans = ""
 | |
|         total_tokens = 0
 | |
|         reasoning_start = False
 | |
|         try:
 | |
|             response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf)
 | |
|             for resp in response:
 | |
|                 if not resp.choices:
 | |
|                     continue
 | |
|                 if not resp.choices[0].delta.content:
 | |
|                     resp.choices[0].delta.content = ""
 | |
|                 if hasattr(resp.choices[0].delta, "reasoning_content") and resp.choices[0].delta.reasoning_content:
 | |
|                     ans = ""
 | |
|                     if not reasoning_start:
 | |
|                         reasoning_start = True
 | |
|                         ans = "<think>"
 | |
|                     ans += resp.choices[0].delta.reasoning_content + "</think>"
 | |
|                 else:
 | |
|                     reasoning_start = False
 | |
|                     ans = resp.choices[0].delta.content
 | |
| 
 | |
|                 tol = self.total_token_count(resp)
 | |
|                 if not tol:
 | |
|                     total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
 | |
|                 else:
 | |
|                     total_tokens += tol
 | |
| 
 | |
|                 if resp.choices[0].finish_reason == "length":
 | |
|                     if is_chinese(ans):
 | |
|                         ans += LENGTH_NOTIFICATION_CN
 | |
|                     else:
 | |
|                         ans += LENGTH_NOTIFICATION_EN
 | |
|                 yield ans
 | |
| 
 | |
|         except openai.APIError as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield total_tokens
 | |
| 
 | |
|     def total_token_count(self, resp):
 | |
|         try:
 | |
|             return resp.usage.total_tokens
 | |
|         except Exception:
 | |
|             pass
 | |
|         try:
 | |
|             return resp["usage"]["total_tokens"]
 | |
|         except Exception:
 | |
|             pass
 | |
|         return 0
 | |
| 
 | |
|     def _calculate_dynamic_ctx(self, history):
 | |
|         """Calculate dynamic context window size"""
 | |
| 
 | |
|         def count_tokens(text):
 | |
|             """Calculate token count for text"""
 | |
|             # Simple calculation: 1 token per ASCII character
 | |
|             # 2 tokens for non-ASCII characters (Chinese, Japanese, Korean, etc.)
 | |
|             total = 0
 | |
|             for char in text:
 | |
|                 if ord(char) < 128:  # ASCII characters
 | |
|                     total += 1
 | |
|                 else:  # Non-ASCII characters (Chinese, Japanese, Korean, etc.)
 | |
|                     total += 2
 | |
|             return total
 | |
| 
 | |
|         # Calculate total tokens for all messages
 | |
|         total_tokens = 0
 | |
|         for message in history:
 | |
|             content = message.get("content", "")
 | |
|             # Calculate content tokens
 | |
|             content_tokens = count_tokens(content)
 | |
|             # Add role marker token overhead
 | |
|             role_tokens = 4
 | |
|             total_tokens += content_tokens + role_tokens
 | |
| 
 | |
|         # Apply 1.2x buffer ratio
 | |
|         total_tokens_with_buffer = int(total_tokens * 1.2)
 | |
| 
 | |
|         if total_tokens_with_buffer <= 8192:
 | |
|             ctx_size = 8192
 | |
|         else:
 | |
|             ctx_multiplier = (total_tokens_with_buffer // 8192) + 1
 | |
|             ctx_size = ctx_multiplier * 8192
 | |
| 
 | |
|         return ctx_size
 | |
| 
 | |
| 
 | |
| class GptTurbo(Base):
 | |
|     def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.openai.com/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class MoonshotChat(Base):
 | |
|     def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.moonshot.cn/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class XinferenceChat(Base):
 | |
|     def __init__(self, key=None, model_name="", base_url=""):
 | |
|         if not base_url:
 | |
|             raise ValueError("Local llm url cannot be None")
 | |
|         if base_url.split("/")[-1] != "v1":
 | |
|             base_url = os.path.join(base_url, "v1")
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class HuggingFaceChat(Base):
 | |
|     def __init__(self, key=None, model_name="", base_url=""):
 | |
|         if not base_url:
 | |
|             raise ValueError("Local llm url cannot be None")
 | |
|         if base_url.split("/")[-1] != "v1":
 | |
|             base_url = os.path.join(base_url, "v1")
 | |
|         super().__init__(key, model_name.split("___")[0], base_url)
 | |
| 
 | |
| 
 | |
| class ModelScopeChat(Base):
 | |
|     def __init__(self, key=None, model_name="", base_url=""):
 | |
|         if not base_url:
 | |
|             raise ValueError("Local llm url cannot be None")
 | |
|         base_url = base_url.rstrip("/")
 | |
|         if base_url.split("/")[-1] != "v1":
 | |
|             base_url = os.path.join(base_url, "v1")
 | |
|         super().__init__(key, model_name.split("___")[0], base_url)
 | |
| 
 | |
| 
 | |
| class DeepSeekChat(Base):
 | |
|     def __init__(self, key, model_name="deepseek-chat", base_url="https://api.deepseek.com/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.deepseek.com/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class AzureChat(Base):
 | |
|     def __init__(self, key, model_name, **kwargs):
 | |
|         api_key = json.loads(key).get("api_key", "")
 | |
|         api_version = json.loads(key).get("api_version", "2024-02-01")
 | |
|         super().__init__(key, model_name, kwargs["base_url"])
 | |
|         self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
 | |
|         self.model_name = model_name
 | |
| 
 | |
| 
 | |
| class BaiChuanChat(Base):
 | |
|     def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.baichuan-ai.com/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
|     @staticmethod
 | |
|     def _format_params(params):
 | |
|         return {
 | |
|             "temperature": params.get("temperature", 0.3),
 | |
|             "top_p": params.get("top_p", 0.85),
 | |
|         }
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
|         try:
 | |
|             response = self.client.chat.completions.create(
 | |
|                 model=self.model_name,
 | |
|                 messages=history,
 | |
|                 extra_body={"tools": [{"type": "web_search", "web_search": {"enable": True, "search_mode": "performance_first"}}]},
 | |
|                 **self._format_params(gen_conf),
 | |
|             )
 | |
|             ans = response.choices[0].message.content.strip()
 | |
|             if response.choices[0].finish_reason == "length":
 | |
|                 if is_chinese([ans]):
 | |
|                     ans += LENGTH_NOTIFICATION_CN
 | |
|                 else:
 | |
|                     ans += LENGTH_NOTIFICATION_EN
 | |
|             return ans, self.total_token_count(response)
 | |
|         except openai.APIError as e:
 | |
|             return "**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
|         ans = ""
 | |
|         total_tokens = 0
 | |
|         try:
 | |
|             response = self.client.chat.completions.create(
 | |
|                 model=self.model_name,
 | |
|                 messages=history,
 | |
|                 extra_body={"tools": [{"type": "web_search", "web_search": {"enable": True, "search_mode": "performance_first"}}]},
 | |
|                 stream=True,
 | |
|                 **self._format_params(gen_conf),
 | |
|             )
 | |
|             for resp in response:
 | |
|                 if not resp.choices:
 | |
|                     continue
 | |
|                 if not resp.choices[0].delta.content:
 | |
|                     resp.choices[0].delta.content = ""
 | |
|                 ans = resp.choices[0].delta.content
 | |
|                 tol = self.total_token_count(resp)
 | |
|                 if not tol:
 | |
|                     total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
 | |
|                 else:
 | |
|                     total_tokens = tol
 | |
|                 if resp.choices[0].finish_reason == "length":
 | |
|                     if is_chinese([ans]):
 | |
|                         ans += LENGTH_NOTIFICATION_CN
 | |
|                     else:
 | |
|                         ans += LENGTH_NOTIFICATION_EN
 | |
|                 yield ans
 | |
| 
 | |
|         except Exception as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield total_tokens
 | |
| 
 | |
| 
 | |
| class QWenChat(Base):
 | |
|     def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs):
 | |
|         super().__init__(key, model_name, base_url=None)
 | |
| 
 | |
|         import dashscope
 | |
| 
 | |
|         dashscope.api_key = key
 | |
|         self.model_name = model_name
 | |
|         if self.is_reasoning_model(self.model_name):
 | |
|             super().__init__(key, model_name, "https://dashscope.aliyuncs.com/compatible-mode/v1")
 | |
| 
 | |
|     def chat_with_tools(self, system: str, history: list, gen_conf: dict) -> tuple[str, int]:
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
|         # if self.is_reasoning_model(self.model_name):
 | |
|         #     return super().chat(system, history, gen_conf)
 | |
| 
 | |
|         stream_flag = str(os.environ.get("QWEN_CHAT_BY_STREAM", "true")).lower() == "true"
 | |
|         if not stream_flag:
 | |
|             from http import HTTPStatus
 | |
| 
 | |
|             tools = self.tools
 | |
| 
 | |
|             if system:
 | |
|                 history.insert(0, {"role": "system", "content": system})
 | |
| 
 | |
|             response = Generation.call(self.model_name, messages=history, result_format="message", tools=tools, **gen_conf)
 | |
|             ans = ""
 | |
|             tk_count = 0
 | |
|             if response.status_code == HTTPStatus.OK:
 | |
|                 assistant_output = response.output.choices[0].message
 | |
|                 if not ans and "tool_calls" not in assistant_output and "reasoning_content" in assistant_output:
 | |
|                     ans += "<think>" + ans + "</think>"
 | |
|                 ans += response.output.choices[0].message.content
 | |
| 
 | |
|                 if "tool_calls" not in assistant_output:
 | |
|                     tk_count += self.total_token_count(response)
 | |
|                     if response.output.choices[0].get("finish_reason", "") == "length":
 | |
|                         if is_chinese([ans]):
 | |
|                             ans += LENGTH_NOTIFICATION_CN
 | |
|                         else:
 | |
|                             ans += LENGTH_NOTIFICATION_EN
 | |
|                     return ans, tk_count
 | |
| 
 | |
|                 tk_count += self.total_token_count(response)
 | |
|                 history.append(assistant_output)
 | |
| 
 | |
|                 while "tool_calls" in assistant_output:
 | |
|                     tool_info = {"content": "", "role": "tool", "tool_call_id": assistant_output.tool_calls[0]["id"]}
 | |
|                     tool_name = assistant_output.tool_calls[0]["function"]["name"]
 | |
|                     if tool_name:
 | |
|                         arguments = json.loads(assistant_output.tool_calls[0]["function"]["arguments"])
 | |
|                         tool_info["content"] = self.toolcall_session.tool_call(name=tool_name, arguments=arguments)
 | |
|                     history.append(tool_info)
 | |
| 
 | |
|                     response = Generation.call(self.model_name, messages=history, result_format="message", tools=self.tools, **gen_conf)
 | |
|                     if response.output.choices[0].get("finish_reason", "") == "length":
 | |
|                         tk_count += self.total_token_count(response)
 | |
|                         if is_chinese([ans]):
 | |
|                             ans += LENGTH_NOTIFICATION_CN
 | |
|                         else:
 | |
|                             ans += LENGTH_NOTIFICATION_EN
 | |
|                         return ans, tk_count
 | |
| 
 | |
|                     tk_count += self.total_token_count(response)
 | |
|                     assistant_output = response.output.choices[0].message
 | |
|                     if assistant_output.content is None:
 | |
|                         assistant_output.content = ""
 | |
|                     history.append(response)
 | |
|                 ans += assistant_output["content"]
 | |
|                 return ans, tk_count
 | |
|             else:
 | |
|                 return "**ERROR**: " + response.message, tk_count
 | |
|         else:
 | |
|             result_list = []
 | |
|             for result in self._chat_streamly_with_tools(system, history, gen_conf, incremental_output=True):
 | |
|                 result_list.append(result)
 | |
|             error_msg_list = [result for result in result_list if str(result).find("**ERROR**") >= 0]
 | |
|             if len(error_msg_list) > 0:
 | |
|                 return "**ERROR**: " + "".join(error_msg_list), 0
 | |
|             else:
 | |
|                 return "".join(result_list[:-1]), result_list[-1]
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
|         if self.is_reasoning_model(self.model_name):
 | |
|             return super().chat(system, history, gen_conf)
 | |
| 
 | |
|         stream_flag = str(os.environ.get("QWEN_CHAT_BY_STREAM", "true")).lower() == "true"
 | |
|         if not stream_flag:
 | |
|             from http import HTTPStatus
 | |
| 
 | |
|             if system:
 | |
|                 history.insert(0, {"role": "system", "content": system})
 | |
| 
 | |
|             response = Generation.call(self.model_name, messages=history, result_format="message", **gen_conf)
 | |
|             ans = ""
 | |
|             tk_count = 0
 | |
|             if response.status_code == HTTPStatus.OK:
 | |
|                 ans += response.output.choices[0]["message"]["content"]
 | |
|                 tk_count += self.total_token_count(response)
 | |
|                 if response.output.choices[0].get("finish_reason", "") == "length":
 | |
|                     if is_chinese([ans]):
 | |
|                         ans += LENGTH_NOTIFICATION_CN
 | |
|                     else:
 | |
|                         ans += LENGTH_NOTIFICATION_EN
 | |
|                 return ans, tk_count
 | |
| 
 | |
|             return "**ERROR**: " + response.message, tk_count
 | |
|         else:
 | |
|             g = self._chat_streamly(system, history, gen_conf, incremental_output=True)
 | |
|             result_list = list(g)
 | |
|             error_msg_list = [item for item in result_list if str(item).find("**ERROR**") >= 0]
 | |
|             if len(error_msg_list) > 0:
 | |
|                 return "**ERROR**: " + "".join(error_msg_list), 0
 | |
|             else:
 | |
|                 return "".join(result_list[:-1]), result_list[-1]
 | |
| 
 | |
|     def _wrap_toolcall_message(self, old_message, message):
 | |
|         if not old_message:
 | |
|             return message
 | |
|         tool_call_id = message["tool_calls"][0].get("id")
 | |
|         if tool_call_id:
 | |
|             old_message.tool_calls[0]["id"] = tool_call_id
 | |
|         function = message.tool_calls[0]["function"]
 | |
|         if function:
 | |
|             if function.get("name"):
 | |
|                 old_message.tool_calls[0]["function"]["name"] = function["name"]
 | |
|             if function.get("arguments"):
 | |
|                 old_message.tool_calls[0]["function"]["arguments"] += function["arguments"]
 | |
|         return old_message
 | |
| 
 | |
|     def _chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict, incremental_output=True):
 | |
|         from http import HTTPStatus
 | |
| 
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
|         ans = ""
 | |
|         tk_count = 0
 | |
|         try:
 | |
|             response = Generation.call(self.model_name, messages=history, result_format="message", tools=self.tools, stream=True, incremental_output=incremental_output, **gen_conf)
 | |
|             tool_info = {"content": "", "role": "tool"}
 | |
|             toolcall_message = None
 | |
|             tool_name = ""
 | |
|             tool_arguments = ""
 | |
|             finish_completion = False
 | |
|             reasoning_start = False
 | |
|             while not finish_completion:
 | |
|                 for resp in response:
 | |
|                     if resp.status_code == HTTPStatus.OK:
 | |
|                         assistant_output = resp.output.choices[0].message
 | |
|                         ans = resp.output.choices[0].message.content
 | |
|                         if not ans and "tool_calls" not in assistant_output and "reasoning_content" in assistant_output:
 | |
|                             ans = resp.output.choices[0].message.reasoning_content
 | |
|                             if not reasoning_start:
 | |
|                                 reasoning_start = True
 | |
|                                 ans = "<think>" + ans
 | |
|                             else:
 | |
|                                 ans = ans + "</think>"
 | |
| 
 | |
|                         if "tool_calls" not in assistant_output:
 | |
|                             reasoning_start = False
 | |
|                             tk_count += self.total_token_count(resp)
 | |
|                             if resp.output.choices[0].get("finish_reason", "") == "length":
 | |
|                                 if is_chinese([ans]):
 | |
|                                     ans += LENGTH_NOTIFICATION_CN
 | |
|                                 else:
 | |
|                                     ans += LENGTH_NOTIFICATION_EN
 | |
|                             finish_reason = resp.output.choices[0]["finish_reason"]
 | |
|                             if finish_reason == "stop":
 | |
|                                 finish_completion = True
 | |
|                                 yield ans
 | |
|                                 break
 | |
|                             yield ans
 | |
|                             continue
 | |
| 
 | |
|                         tk_count += self.total_token_count(resp)
 | |
|                         toolcall_message = self._wrap_toolcall_message(toolcall_message, assistant_output)
 | |
|                         if "tool_calls" in assistant_output:
 | |
|                             tool_call_finish_reason = resp.output.choices[0]["finish_reason"]
 | |
|                             if tool_call_finish_reason == "tool_calls":
 | |
|                                 try:
 | |
|                                     tool_arguments = json.loads(toolcall_message.tool_calls[0]["function"]["arguments"])
 | |
|                                 except Exception as e:
 | |
|                                     logging.exception(msg="_chat_streamly_with_tool tool call error")
 | |
|                                     yield ans + "\n**ERROR**: " + str(e)
 | |
|                                     finish_completion = True
 | |
|                                     break
 | |
| 
 | |
|                                 tool_name = toolcall_message.tool_calls[0]["function"]["name"]
 | |
|                                 history.append(toolcall_message)
 | |
|                                 tool_info["content"] = self.toolcall_session.tool_call(name=tool_name, arguments=tool_arguments)
 | |
|                                 history.append(tool_info)
 | |
|                                 tool_info = {"content": "", "role": "tool"}
 | |
|                                 tool_name = ""
 | |
|                                 tool_arguments = ""
 | |
|                                 toolcall_message = None
 | |
|                                 response = Generation.call(self.model_name, messages=history, result_format="message", tools=self.tools, stream=True, incremental_output=incremental_output, **gen_conf)
 | |
|                     else:
 | |
|                         yield (
 | |
|                             ans + "\n**ERROR**: " + resp.output.choices[0].message
 | |
|                             if not re.search(r" (key|quota)", str(resp.message).lower())
 | |
|                             else "Out of credit. Please set the API key in **settings > Model providers.**"
 | |
|                         )
 | |
|         except Exception as e:
 | |
|             logging.exception(msg="_chat_streamly_with_tool")
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
|         yield tk_count
 | |
| 
 | |
|     def _chat_streamly(self, system, history, gen_conf, incremental_output=True):
 | |
|         from http import HTTPStatus
 | |
| 
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
|         ans = ""
 | |
|         tk_count = 0
 | |
|         try:
 | |
|             response = Generation.call(self.model_name, messages=history, result_format="message", stream=True, incremental_output=incremental_output, **gen_conf)
 | |
|             for resp in response:
 | |
|                 if resp.status_code == HTTPStatus.OK:
 | |
|                     ans = resp.output.choices[0]["message"]["content"]
 | |
|                     tk_count = self.total_token_count(resp)
 | |
|                     if resp.output.choices[0].get("finish_reason", "") == "length":
 | |
|                         if is_chinese(ans):
 | |
|                             ans += LENGTH_NOTIFICATION_CN
 | |
|                         else:
 | |
|                             ans += LENGTH_NOTIFICATION_EN
 | |
|                     yield ans
 | |
|                 else:
 | |
|                     yield (
 | |
|                         ans + "\n**ERROR**: " + resp.message
 | |
|                         if not re.search(r" (key|quota)", str(resp.message).lower())
 | |
|                         else "Out of credit. Please set the API key in **settings > Model providers.**"
 | |
|                     )
 | |
|         except Exception as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield tk_count
 | |
| 
 | |
|     def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict, incremental_output=True):
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
| 
 | |
|         for txt in self._chat_streamly_with_tools(system, history, gen_conf, incremental_output=incremental_output):
 | |
|             yield txt
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
|         if self.is_reasoning_model(self.model_name):
 | |
|             return super().chat_streamly(system, history, gen_conf)
 | |
| 
 | |
|         return self._chat_streamly(system, history, gen_conf)
 | |
| 
 | |
|     @staticmethod
 | |
|     def is_reasoning_model(model_name: str) -> bool:
 | |
|         return any(
 | |
|             [
 | |
|                 model_name.lower().find("deepseek") >= 0,
 | |
|                 model_name.lower().find("qwq") >= 0 and model_name.lower() != "qwq-32b-preview",
 | |
|             ]
 | |
|         )
 | |
| 
 | |
| 
 | |
| class ZhipuChat(Base):
 | |
|     def __init__(self, key, model_name="glm-3-turbo", **kwargs):
 | |
|         super().__init__(key, model_name, base_url=None)
 | |
| 
 | |
|         self.client = ZhipuAI(api_key=key)
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
|         try:
 | |
|             if "presence_penalty" in gen_conf:
 | |
|                 del gen_conf["presence_penalty"]
 | |
|             if "frequency_penalty" in gen_conf:
 | |
|                 del gen_conf["frequency_penalty"]
 | |
|             response = self.client.chat.completions.create(model=self.model_name, messages=history, **gen_conf)
 | |
|             ans = response.choices[0].message.content.strip()
 | |
|             if response.choices[0].finish_reason == "length":
 | |
|                 if is_chinese(ans):
 | |
|                     ans += LENGTH_NOTIFICATION_CN
 | |
|                 else:
 | |
|                     ans += LENGTH_NOTIFICATION_EN
 | |
|             return ans, self.total_token_count(response)
 | |
|         except Exception as e:
 | |
|             return "**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
|         if "presence_penalty" in gen_conf:
 | |
|             del gen_conf["presence_penalty"]
 | |
|         if "frequency_penalty" in gen_conf:
 | |
|             del gen_conf["frequency_penalty"]
 | |
|         ans = ""
 | |
|         tk_count = 0
 | |
|         try:
 | |
|             response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf)
 | |
|             for resp in response:
 | |
|                 if not resp.choices[0].delta.content:
 | |
|                     continue
 | |
|                 delta = resp.choices[0].delta.content
 | |
|                 ans = delta
 | |
|                 if resp.choices[0].finish_reason == "length":
 | |
|                     if is_chinese(ans):
 | |
|                         ans += LENGTH_NOTIFICATION_CN
 | |
|                     else:
 | |
|                         ans += LENGTH_NOTIFICATION_EN
 | |
|                     tk_count = self.total_token_count(resp)
 | |
|                 if resp.choices[0].finish_reason == "stop":
 | |
|                     tk_count = self.total_token_count(resp)
 | |
|                 yield ans
 | |
|         except Exception as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield tk_count
 | |
| 
 | |
| 
 | |
| class OllamaChat(Base):
 | |
|     def __init__(self, key, model_name, **kwargs):
 | |
|         super().__init__(key, model_name, base_url=None)
 | |
| 
 | |
|         self.client = Client(host=kwargs["base_url"]) if not key or key == "x" else Client(host=kwargs["base_url"], headers={"Authorization": f"Bearer {key}"})
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
|         try:
 | |
|             # Calculate context size
 | |
|             ctx_size = self._calculate_dynamic_ctx(history)
 | |
| 
 | |
|             options = {"num_ctx": ctx_size}
 | |
|             if "temperature" in gen_conf:
 | |
|                 options["temperature"] = gen_conf["temperature"]
 | |
|             if "max_tokens" in gen_conf:
 | |
|                 options["num_predict"] = gen_conf["max_tokens"]
 | |
|             if "top_p" in gen_conf:
 | |
|                 options["top_p"] = gen_conf["top_p"]
 | |
|             if "presence_penalty" in gen_conf:
 | |
|                 options["presence_penalty"] = gen_conf["presence_penalty"]
 | |
|             if "frequency_penalty" in gen_conf:
 | |
|                 options["frequency_penalty"] = gen_conf["frequency_penalty"]
 | |
| 
 | |
|             response = self.client.chat(model=self.model_name, messages=history, options=options, keep_alive=10)
 | |
|             ans = response["message"]["content"].strip()
 | |
|             token_count = response.get("eval_count", 0) + response.get("prompt_eval_count", 0)
 | |
|             return ans, token_count
 | |
|         except Exception as e:
 | |
|             return "**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
|         try:
 | |
|             # Calculate context size
 | |
|             ctx_size = self._calculate_dynamic_ctx(history)
 | |
|             options = {"num_ctx": ctx_size}
 | |
|             if "temperature" in gen_conf:
 | |
|                 options["temperature"] = gen_conf["temperature"]
 | |
|             if "max_tokens" in gen_conf:
 | |
|                 options["num_predict"] = gen_conf["max_tokens"]
 | |
|             if "top_p" in gen_conf:
 | |
|                 options["top_p"] = gen_conf["top_p"]
 | |
|             if "presence_penalty" in gen_conf:
 | |
|                 options["presence_penalty"] = gen_conf["presence_penalty"]
 | |
|             if "frequency_penalty" in gen_conf:
 | |
|                 options["frequency_penalty"] = gen_conf["frequency_penalty"]
 | |
| 
 | |
|             ans = ""
 | |
|             try:
 | |
|                 response = self.client.chat(model=self.model_name, messages=history, stream=True, options=options, keep_alive=10)
 | |
|                 for resp in response:
 | |
|                     if resp["done"]:
 | |
|                         token_count = resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
 | |
|                         yield token_count
 | |
|                     ans = resp["message"]["content"]
 | |
|                     yield ans
 | |
|             except Exception as e:
 | |
|                 yield ans + "\n**ERROR**: " + str(e)
 | |
|             yield 0
 | |
|         except Exception as e:
 | |
|             yield "**ERROR**: " + str(e)
 | |
|             yield 0
 | |
| 
 | |
| 
 | |
| class LocalAIChat(Base):
 | |
|     def __init__(self, key, model_name, base_url):
 | |
|         super().__init__(key, model_name, base_url=None)
 | |
| 
 | |
|         if not base_url:
 | |
|             raise ValueError("Local llm url cannot be None")
 | |
|         if base_url.split("/")[-1] != "v1":
 | |
|             base_url = os.path.join(base_url, "v1")
 | |
|         self.client = OpenAI(api_key="empty", base_url=base_url)
 | |
|         self.model_name = model_name.split("___")[0]
 | |
| 
 | |
| 
 | |
| class LocalLLM(Base):
 | |
|     class RPCProxy:
 | |
|         def __init__(self, host, port):
 | |
|             self.host = host
 | |
|             self.port = int(port)
 | |
|             self.__conn()
 | |
| 
 | |
|         def __conn(self):
 | |
|             from multiprocessing.connection import Client
 | |
| 
 | |
|             self._connection = Client((self.host, self.port), authkey=b"infiniflow-token4kevinhu")
 | |
| 
 | |
|         def __getattr__(self, name):
 | |
|             import pickle
 | |
| 
 | |
|             def do_rpc(*args, **kwargs):
 | |
|                 for _ in range(3):
 | |
|                     try:
 | |
|                         self._connection.send(pickle.dumps((name, args, kwargs)))
 | |
|                         return pickle.loads(self._connection.recv())
 | |
|                     except Exception:
 | |
|                         self.__conn()
 | |
|                 raise Exception("RPC connection lost!")
 | |
| 
 | |
|             return do_rpc
 | |
| 
 | |
|     def __init__(self, key, model_name):
 | |
|         super().__init__(key, model_name, base_url=None)
 | |
| 
 | |
|         from jina import Client
 | |
| 
 | |
|         self.client = Client(port=12345, protocol="grpc", asyncio=True)
 | |
| 
 | |
|     def _prepare_prompt(self, system, history, gen_conf):
 | |
|         from rag.svr.jina_server import Prompt
 | |
| 
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         return Prompt(message=history, gen_conf=gen_conf)
 | |
| 
 | |
|     def _stream_response(self, endpoint, prompt):
 | |
|         from rag.svr.jina_server import Generation
 | |
| 
 | |
|         answer = ""
 | |
|         try:
 | |
|             res = self.client.stream_doc(on=endpoint, inputs=prompt, return_type=Generation)
 | |
|             loop = asyncio.get_event_loop()
 | |
|             try:
 | |
|                 while True:
 | |
|                     answer = loop.run_until_complete(res.__anext__()).text
 | |
|                     yield answer
 | |
|             except StopAsyncIteration:
 | |
|                 pass
 | |
|         except Exception as e:
 | |
|             yield answer + "\n**ERROR**: " + str(e)
 | |
|         yield num_tokens_from_string(answer)
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
|         prompt = self._prepare_prompt(system, history, gen_conf)
 | |
|         chat_gen = self._stream_response("/chat", prompt)
 | |
|         ans = next(chat_gen)
 | |
|         total_tokens = next(chat_gen)
 | |
|         return ans, total_tokens
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
|         prompt = self._prepare_prompt(system, history, gen_conf)
 | |
|         return self._stream_response("/stream", prompt)
 | |
| 
 | |
| 
 | |
| class VolcEngineChat(Base):
 | |
|     def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3"):
 | |
|         super().__init__(key, model_name, base_url=None)
 | |
| 
 | |
|         """
 | |
|         Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special,
 | |
|         Assemble ark_api_key, ep_id into api_key, store it as a dictionary type, and parse it for use
 | |
|         model_name is for display only
 | |
|         """
 | |
|         base_url = base_url if base_url else "https://ark.cn-beijing.volces.com/api/v3"
 | |
|         ark_api_key = json.loads(key).get("ark_api_key", "")
 | |
|         model_name = json.loads(key).get("ep_id", "") + json.loads(key).get("endpoint_id", "")
 | |
|         super().__init__(ark_api_key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class MiniMaxChat(Base):
 | |
|     def __init__(
 | |
|         self,
 | |
|         key,
 | |
|         model_name,
 | |
|         base_url="https://api.minimax.chat/v1/text/chatcompletion_v2",
 | |
|     ):
 | |
|         super().__init__(key, model_name, base_url=None)
 | |
| 
 | |
|         if not base_url:
 | |
|             base_url = "https://api.minimax.chat/v1/text/chatcompletion_v2"
 | |
|         self.base_url = base_url
 | |
|         self.model_name = model_name
 | |
|         self.api_key = key
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         for k in list(gen_conf.keys()):
 | |
|             if k not in ["temperature", "top_p", "max_tokens"]:
 | |
|                 del gen_conf[k]
 | |
|         headers = {
 | |
|             "Authorization": f"Bearer {self.api_key}",
 | |
|             "Content-Type": "application/json",
 | |
|         }
 | |
|         payload = json.dumps({"model": self.model_name, "messages": history, **gen_conf})
 | |
|         try:
 | |
|             response = requests.request("POST", url=self.base_url, headers=headers, data=payload)
 | |
|             response = response.json()
 | |
|             ans = response["choices"][0]["message"]["content"].strip()
 | |
|             if response["choices"][0]["finish_reason"] == "length":
 | |
|                 if is_chinese(ans):
 | |
|                     ans += LENGTH_NOTIFICATION_CN
 | |
|                 else:
 | |
|                     ans += LENGTH_NOTIFICATION_EN
 | |
|             return ans, self.total_token_count(response)
 | |
|         except Exception as e:
 | |
|             return "**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         for k in list(gen_conf.keys()):
 | |
|             if k not in ["temperature", "top_p", "max_tokens"]:
 | |
|                 del gen_conf[k]
 | |
|         ans = ""
 | |
|         total_tokens = 0
 | |
|         try:
 | |
|             headers = {
 | |
|                 "Authorization": f"Bearer {self.api_key}",
 | |
|                 "Content-Type": "application/json",
 | |
|             }
 | |
|             payload = json.dumps(
 | |
|                 {
 | |
|                     "model": self.model_name,
 | |
|                     "messages": history,
 | |
|                     "stream": True,
 | |
|                     **gen_conf,
 | |
|                 }
 | |
|             )
 | |
|             response = requests.request(
 | |
|                 "POST",
 | |
|                 url=self.base_url,
 | |
|                 headers=headers,
 | |
|                 data=payload,
 | |
|             )
 | |
|             for resp in response.text.split("\n\n")[:-1]:
 | |
|                 resp = json.loads(resp[6:])
 | |
|                 text = ""
 | |
|                 if "choices" in resp and "delta" in resp["choices"][0]:
 | |
|                     text = resp["choices"][0]["delta"]["content"]
 | |
|                 ans = text
 | |
|                 tol = self.total_token_count(resp)
 | |
|                 if not tol:
 | |
|                     total_tokens += num_tokens_from_string(text)
 | |
|                 else:
 | |
|                     total_tokens = tol
 | |
|                 yield ans
 | |
| 
 | |
|         except Exception as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield total_tokens
 | |
| 
 | |
| 
 | |
| class MistralChat(Base):
 | |
|     def __init__(self, key, model_name, base_url=None):
 | |
|         super().__init__(key, model_name, base_url=None)
 | |
| 
 | |
|         from mistralai.client import MistralClient
 | |
| 
 | |
|         self.client = MistralClient(api_key=key)
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         for k in list(gen_conf.keys()):
 | |
|             if k not in ["temperature", "top_p", "max_tokens"]:
 | |
|                 del gen_conf[k]
 | |
|         try:
 | |
|             response = self.client.chat(model=self.model_name, messages=history, **gen_conf)
 | |
|             ans = response.choices[0].message.content
 | |
|             if response.choices[0].finish_reason == "length":
 | |
|                 if is_chinese(ans):
 | |
|                     ans += LENGTH_NOTIFICATION_CN
 | |
|                 else:
 | |
|                     ans += LENGTH_NOTIFICATION_EN
 | |
|             return ans, self.total_token_count(response)
 | |
|         except openai.APIError as e:
 | |
|             return "**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         for k in list(gen_conf.keys()):
 | |
|             if k not in ["temperature", "top_p", "max_tokens"]:
 | |
|                 del gen_conf[k]
 | |
|         ans = ""
 | |
|         total_tokens = 0
 | |
|         try:
 | |
|             response = self.client.chat_stream(model=self.model_name, messages=history, **gen_conf)
 | |
|             for resp in response:
 | |
|                 if not resp.choices or not resp.choices[0].delta.content:
 | |
|                     continue
 | |
|                 ans = resp.choices[0].delta.content
 | |
|                 total_tokens += 1
 | |
|                 if resp.choices[0].finish_reason == "length":
 | |
|                     if is_chinese(ans):
 | |
|                         ans += LENGTH_NOTIFICATION_CN
 | |
|                     else:
 | |
|                         ans += LENGTH_NOTIFICATION_EN
 | |
|                 yield ans
 | |
| 
 | |
|         except openai.APIError as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield total_tokens
 | |
| 
 | |
| 
 | |
| class BedrockChat(Base):
 | |
|     def __init__(self, key, model_name, **kwargs):
 | |
|         super().__init__(key, model_name, base_url=None)
 | |
| 
 | |
|         import boto3
 | |
| 
 | |
|         self.bedrock_ak = json.loads(key).get("bedrock_ak", "")
 | |
|         self.bedrock_sk = json.loads(key).get("bedrock_sk", "")
 | |
|         self.bedrock_region = json.loads(key).get("bedrock_region", "")
 | |
|         self.model_name = model_name
 | |
| 
 | |
|         if self.bedrock_ak == "" or self.bedrock_sk == "" or self.bedrock_region == "":
 | |
|             # Try to create a client using the default credentials (AWS_PROFILE, AWS_DEFAULT_REGION, etc.)
 | |
|             self.client = boto3.client("bedrock-runtime")
 | |
|         else:
 | |
|             self.client = boto3.client(service_name="bedrock-runtime", region_name=self.bedrock_region, aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         from botocore.exceptions import ClientError
 | |
| 
 | |
|         for k in list(gen_conf.keys()):
 | |
|             if k not in ["temperature"]:
 | |
|                 del gen_conf[k]
 | |
|         for item in history:
 | |
|             if not isinstance(item["content"], list) and not isinstance(item["content"], tuple):
 | |
|                 item["content"] = [{"text": item["content"]}]
 | |
| 
 | |
|         try:
 | |
|             # Send the message to the model, using a basic inference configuration.
 | |
|             response = self.client.converse(
 | |
|                 modelId=self.model_name,
 | |
|                 messages=history,
 | |
|                 inferenceConfig=gen_conf,
 | |
|                 system=[{"text": (system if system else "Answer the user's message.")}],
 | |
|             )
 | |
| 
 | |
|             # Extract and print the response text.
 | |
|             ans = response["output"]["message"]["content"][0]["text"]
 | |
|             return ans, num_tokens_from_string(ans)
 | |
| 
 | |
|         except (ClientError, Exception) as e:
 | |
|             return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         from botocore.exceptions import ClientError
 | |
| 
 | |
|         for k in list(gen_conf.keys()):
 | |
|             if k not in ["temperature"]:
 | |
|                 del gen_conf[k]
 | |
|         for item in history:
 | |
|             if not isinstance(item["content"], list) and not isinstance(item["content"], tuple):
 | |
|                 item["content"] = [{"text": item["content"]}]
 | |
| 
 | |
|         if self.model_name.split(".")[0] == "ai21":
 | |
|             try:
 | |
|                 response = self.client.converse(modelId=self.model_name, messages=history, inferenceConfig=gen_conf, system=[{"text": (system if system else "Answer the user's message.")}])
 | |
|                 ans = response["output"]["message"]["content"][0]["text"]
 | |
|                 return ans, num_tokens_from_string(ans)
 | |
| 
 | |
|             except (ClientError, Exception) as e:
 | |
|                 return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
 | |
| 
 | |
|         ans = ""
 | |
|         try:
 | |
|             # Send the message to the model, using a basic inference configuration.
 | |
|             streaming_response = self.client.converse_stream(
 | |
|                 modelId=self.model_name, messages=history, inferenceConfig=gen_conf, system=[{"text": (system if system else "Answer the user's message.")}]
 | |
|             )
 | |
| 
 | |
|             # Extract and print the streamed response text in real-time.
 | |
|             for resp in streaming_response["stream"]:
 | |
|                 if "contentBlockDelta" in resp:
 | |
|                     ans = resp["contentBlockDelta"]["delta"]["text"]
 | |
|                     yield ans
 | |
| 
 | |
|         except (ClientError, Exception) as e:
 | |
|             yield ans + f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}"
 | |
| 
 | |
|         yield num_tokens_from_string(ans)
 | |
| 
 | |
| 
 | |
| class GeminiChat(Base):
 | |
|     def __init__(self, key, model_name, base_url=None):
 | |
|         super().__init__(key, model_name, base_url=None)
 | |
| 
 | |
|         from google.generativeai import GenerativeModel, client
 | |
| 
 | |
|         client.configure(api_key=key)
 | |
|         _client = client.get_default_generative_client()
 | |
|         self.model_name = "models/" + model_name
 | |
|         self.model = GenerativeModel(model_name=self.model_name)
 | |
|         self.model._client = _client
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         from google.generativeai.types import content_types
 | |
| 
 | |
|         if system:
 | |
|             self.model._system_instruction = content_types.to_content(system)
 | |
|         for k in list(gen_conf.keys()):
 | |
|             if k not in ["temperature", "top_p", "max_tokens"]:
 | |
|                 del gen_conf[k]
 | |
|         for item in history:
 | |
|             if "role" in item and item["role"] == "assistant":
 | |
|                 item["role"] = "model"
 | |
|             if "role" in item and item["role"] == "system":
 | |
|                 item["role"] = "user"
 | |
|             if "content" in item:
 | |
|                 item["parts"] = item.pop("content")
 | |
| 
 | |
|         try:
 | |
|             response = self.model.generate_content(history, generation_config=gen_conf)
 | |
|             ans = response.text
 | |
|             return ans, response.usage_metadata.total_token_count
 | |
|         except Exception as e:
 | |
|             return "**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         from google.generativeai.types import content_types
 | |
| 
 | |
|         if system:
 | |
|             self.model._system_instruction = content_types.to_content(system)
 | |
|         for k in list(gen_conf.keys()):
 | |
|             if k not in ["temperature", "top_p", "max_tokens"]:
 | |
|                 del gen_conf[k]
 | |
|         for item in history:
 | |
|             if "role" in item and item["role"] == "assistant":
 | |
|                 item["role"] = "model"
 | |
|             if "content" in item:
 | |
|                 item["parts"] = item.pop("content")
 | |
|         ans = ""
 | |
|         try:
 | |
|             response = self.model.generate_content(history, generation_config=gen_conf, stream=True)
 | |
|             for resp in response:
 | |
|                 ans = resp.text
 | |
|                 yield ans
 | |
| 
 | |
|             yield response._chunks[-1].usage_metadata.total_token_count
 | |
|         except Exception as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield 0
 | |
| 
 | |
| 
 | |
| class GroqChat(Base):
 | |
|     def __init__(self, key, model_name, base_url=""):
 | |
|         super().__init__(key, model_name, base_url=None)
 | |
| 
 | |
|         from groq import Groq
 | |
| 
 | |
|         self.client = Groq(api_key=key)
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         for k in list(gen_conf.keys()):
 | |
|             if k not in ["temperature", "top_p", "max_tokens"]:
 | |
|                 del gen_conf[k]
 | |
|         ans = ""
 | |
|         try:
 | |
|             response = self.client.chat.completions.create(model=self.model_name, messages=history, **gen_conf)
 | |
|             ans = response.choices[0].message.content
 | |
|             if response.choices[0].finish_reason == "length":
 | |
|                 if is_chinese(ans):
 | |
|                     ans += LENGTH_NOTIFICATION_CN
 | |
|                 else:
 | |
|                     ans += LENGTH_NOTIFICATION_EN
 | |
|             return ans, self.total_token_count(response)
 | |
|         except Exception as e:
 | |
|             return ans + "\n**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         for k in list(gen_conf.keys()):
 | |
|             if k not in ["temperature", "top_p", "max_tokens"]:
 | |
|                 del gen_conf[k]
 | |
|         ans = ""
 | |
|         total_tokens = 0
 | |
|         try:
 | |
|             response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf)
 | |
|             for resp in response:
 | |
|                 if not resp.choices or not resp.choices[0].delta.content:
 | |
|                     continue
 | |
|                 ans = resp.choices[0].delta.content
 | |
|                 total_tokens += 1
 | |
|                 if resp.choices[0].finish_reason == "length":
 | |
|                     if is_chinese(ans):
 | |
|                         ans += LENGTH_NOTIFICATION_CN
 | |
|                     else:
 | |
|                         ans += LENGTH_NOTIFICATION_EN
 | |
|                 yield ans
 | |
| 
 | |
|         except Exception as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield total_tokens
 | |
| 
 | |
| 
 | |
| ## openrouter
 | |
| class OpenRouterChat(Base):
 | |
|     def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://openrouter.ai/api/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class StepFunChat(Base):
 | |
|     def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.stepfun.com/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class NvidiaChat(Base):
 | |
|     def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://integrate.api.nvidia.com/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class LmStudioChat(Base):
 | |
|     def __init__(self, key, model_name, base_url):
 | |
|         if not base_url:
 | |
|             raise ValueError("Local llm url cannot be None")
 | |
|         if base_url.split("/")[-1] != "v1":
 | |
|             base_url = os.path.join(base_url, "v1")
 | |
|         super().__init__(key, model_name, base_url)
 | |
|         self.client = OpenAI(api_key="lm-studio", base_url=base_url)
 | |
|         self.model_name = model_name
 | |
| 
 | |
| 
 | |
| class OpenAI_APIChat(Base):
 | |
|     def __init__(self, key, model_name, base_url):
 | |
|         if not base_url:
 | |
|             raise ValueError("url cannot be None")
 | |
|         model_name = model_name.split("___")[0]
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class PPIOChat(Base):
 | |
|     def __init__(self, key, model_name, base_url="https://api.ppinfra.com/v3/openai"):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.ppinfra.com/v3/openai"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class CoHereChat(Base):
 | |
|     def __init__(self, key, model_name, base_url=""):
 | |
|         super().__init__(key, model_name, base_url=None)
 | |
| 
 | |
|         from cohere import Client
 | |
| 
 | |
|         self.client = Client(api_key=key)
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
|         if "top_p" in gen_conf:
 | |
|             gen_conf["p"] = gen_conf.pop("top_p")
 | |
|         if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
 | |
|             gen_conf.pop("presence_penalty")
 | |
|         for item in history:
 | |
|             if "role" in item and item["role"] == "user":
 | |
|                 item["role"] = "USER"
 | |
|             if "role" in item and item["role"] == "assistant":
 | |
|                 item["role"] = "CHATBOT"
 | |
|             if "content" in item:
 | |
|                 item["message"] = item.pop("content")
 | |
|         mes = history.pop()["message"]
 | |
|         ans = ""
 | |
|         try:
 | |
|             response = self.client.chat(model=self.model_name, chat_history=history, message=mes, **gen_conf)
 | |
|             ans = response.text
 | |
|             if response.finish_reason == "MAX_TOKENS":
 | |
|                 ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | |
|             return (
 | |
|                 ans,
 | |
|                 response.meta.tokens.input_tokens + response.meta.tokens.output_tokens,
 | |
|             )
 | |
|         except Exception as e:
 | |
|             return ans + "\n**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
|         if "top_p" in gen_conf:
 | |
|             gen_conf["p"] = gen_conf.pop("top_p")
 | |
|         if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
 | |
|             gen_conf.pop("presence_penalty")
 | |
|         for item in history:
 | |
|             if "role" in item and item["role"] == "user":
 | |
|                 item["role"] = "USER"
 | |
|             if "role" in item and item["role"] == "assistant":
 | |
|                 item["role"] = "CHATBOT"
 | |
|             if "content" in item:
 | |
|                 item["message"] = item.pop("content")
 | |
|         mes = history.pop()["message"]
 | |
|         ans = ""
 | |
|         total_tokens = 0
 | |
|         try:
 | |
|             response = self.client.chat_stream(model=self.model_name, chat_history=history, message=mes, **gen_conf)
 | |
|             for resp in response:
 | |
|                 if resp.event_type == "text-generation":
 | |
|                     ans = resp.text
 | |
|                     total_tokens += num_tokens_from_string(resp.text)
 | |
|                 elif resp.event_type == "stream-end":
 | |
|                     if resp.finish_reason == "MAX_TOKENS":
 | |
|                         ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | |
|                 yield ans
 | |
| 
 | |
|         except Exception as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield total_tokens
 | |
| 
 | |
| 
 | |
| class LeptonAIChat(Base):
 | |
|     def __init__(self, key, model_name, base_url=None):
 | |
|         if not base_url:
 | |
|             base_url = os.path.join("https://" + model_name + ".lepton.run", "api", "v1")
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class TogetherAIChat(Base):
 | |
|     def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.together.xyz/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class PerfXCloudChat(Base):
 | |
|     def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://cloud.perfxlab.cn/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class UpstageChat(Base):
 | |
|     def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.upstage.ai/v1/solar"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class NovitaAIChat(Base):
 | |
|     def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai"):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.novita.ai/v3/openai"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class SILICONFLOWChat(Base):
 | |
|     def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.siliconflow.cn/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class YiChat(Base):
 | |
|     def __init__(self, key, model_name, base_url="https://api.lingyiwanwu.com/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.lingyiwanwu.com/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class ReplicateChat(Base):
 | |
|     def __init__(self, key, model_name, base_url=None):
 | |
|         super().__init__(key, model_name, base_url=None)
 | |
| 
 | |
|         from replicate.client import Client
 | |
| 
 | |
|         self.model_name = model_name
 | |
|         self.client = Client(api_token=key)
 | |
|         self.system = ""
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
|         if system:
 | |
|             self.system = system
 | |
|         prompt = "\n".join([item["role"] + ":" + item["content"] for item in history[-5:]])
 | |
|         ans = ""
 | |
|         try:
 | |
|             response = self.client.run(
 | |
|                 self.model_name,
 | |
|                 input={"system_prompt": self.system, "prompt": prompt, **gen_conf},
 | |
|             )
 | |
|             ans = "".join(response)
 | |
|             return ans, num_tokens_from_string(ans)
 | |
|         except Exception as e:
 | |
|             return ans + "\n**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
|         if system:
 | |
|             self.system = system
 | |
|         prompt = "\n".join([item["role"] + ":" + item["content"] for item in history[-5:]])
 | |
|         ans = ""
 | |
|         try:
 | |
|             response = self.client.run(
 | |
|                 self.model_name,
 | |
|                 input={"system_prompt": self.system, "prompt": prompt, **gen_conf},
 | |
|             )
 | |
|             for resp in response:
 | |
|                 ans = resp
 | |
|                 yield ans
 | |
| 
 | |
|         except Exception as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield num_tokens_from_string(ans)
 | |
| 
 | |
| 
 | |
| class HunyuanChat(Base):
 | |
|     def __init__(self, key, model_name, base_url=None):
 | |
|         super().__init__(key, model_name, base_url=None)
 | |
| 
 | |
|         from tencentcloud.common import credential
 | |
|         from tencentcloud.hunyuan.v20230901 import hunyuan_client
 | |
| 
 | |
|         key = json.loads(key)
 | |
|         sid = key.get("hunyuan_sid", "")
 | |
|         sk = key.get("hunyuan_sk", "")
 | |
|         cred = credential.Credential(sid, sk)
 | |
|         self.model_name = model_name
 | |
|         self.client = hunyuan_client.HunyuanClient(cred, "")
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
 | |
|             TencentCloudSDKException,
 | |
|         )
 | |
|         from tencentcloud.hunyuan.v20230901 import models
 | |
| 
 | |
|         _gen_conf = {}
 | |
|         _history = [{k.capitalize(): v for k, v in item.items()} for item in history]
 | |
|         if system:
 | |
|             _history.insert(0, {"Role": "system", "Content": system})
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
|         if "temperature" in gen_conf:
 | |
|             _gen_conf["Temperature"] = gen_conf["temperature"]
 | |
|         if "top_p" in gen_conf:
 | |
|             _gen_conf["TopP"] = gen_conf["top_p"]
 | |
| 
 | |
|         req = models.ChatCompletionsRequest()
 | |
|         params = {"Model": self.model_name, "Messages": _history, **_gen_conf}
 | |
|         req.from_json_string(json.dumps(params))
 | |
|         ans = ""
 | |
|         try:
 | |
|             response = self.client.ChatCompletions(req)
 | |
|             ans = response.Choices[0].Message.Content
 | |
|             return ans, response.Usage.TotalTokens
 | |
|         except TencentCloudSDKException as e:
 | |
|             return ans + "\n**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
 | |
|             TencentCloudSDKException,
 | |
|         )
 | |
|         from tencentcloud.hunyuan.v20230901 import models
 | |
| 
 | |
|         _gen_conf = {}
 | |
|         _history = [{k.capitalize(): v for k, v in item.items()} for item in history]
 | |
|         if system:
 | |
|             _history.insert(0, {"Role": "system", "Content": system})
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
|         if "temperature" in gen_conf:
 | |
|             _gen_conf["Temperature"] = gen_conf["temperature"]
 | |
|         if "top_p" in gen_conf:
 | |
|             _gen_conf["TopP"] = gen_conf["top_p"]
 | |
|         req = models.ChatCompletionsRequest()
 | |
|         params = {
 | |
|             "Model": self.model_name,
 | |
|             "Messages": _history,
 | |
|             "Stream": True,
 | |
|             **_gen_conf,
 | |
|         }
 | |
|         req.from_json_string(json.dumps(params))
 | |
|         ans = ""
 | |
|         total_tokens = 0
 | |
|         try:
 | |
|             response = self.client.ChatCompletions(req)
 | |
|             for resp in response:
 | |
|                 resp = json.loads(resp["data"])
 | |
|                 if not resp["Choices"] or not resp["Choices"][0]["Delta"]["Content"]:
 | |
|                     continue
 | |
|                 ans = resp["Choices"][0]["Delta"]["Content"]
 | |
|                 total_tokens += 1
 | |
| 
 | |
|                 yield ans
 | |
| 
 | |
|         except TencentCloudSDKException as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield total_tokens
 | |
| 
 | |
| 
 | |
| class SparkChat(Base):
 | |
|     def __init__(self, key, model_name, base_url="https://spark-api-open.xf-yun.com/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://spark-api-open.xf-yun.com/v1"
 | |
|         model2version = {
 | |
|             "Spark-Max": "generalv3.5",
 | |
|             "Spark-Lite": "general",
 | |
|             "Spark-Pro": "generalv3",
 | |
|             "Spark-Pro-128K": "pro-128k",
 | |
|             "Spark-4.0-Ultra": "4.0Ultra",
 | |
|         }
 | |
|         version2model = {v: k for k, v in model2version.items()}
 | |
|         assert model_name in model2version or model_name in version2model, f"The given model name is not supported yet. Support: {list(model2version.keys())}"
 | |
|         if model_name in model2version:
 | |
|             model_version = model2version[model_name]
 | |
|         else:
 | |
|             model_version = model_name
 | |
|         super().__init__(key, model_version, base_url)
 | |
| 
 | |
| 
 | |
| class BaiduYiyanChat(Base):
 | |
|     def __init__(self, key, model_name, base_url=None):
 | |
|         super().__init__(key, model_name, base_url=None)
 | |
| 
 | |
|         import qianfan
 | |
| 
 | |
|         key = json.loads(key)
 | |
|         ak = key.get("yiyan_ak", "")
 | |
|         sk = key.get("yiyan_sk", "")
 | |
|         self.client = qianfan.ChatCompletion(ak=ak, sk=sk)
 | |
|         self.model_name = model_name.lower()
 | |
|         self.system = ""
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             self.system = system
 | |
|         gen_conf["penalty_score"] = ((gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2) + 1
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
|         ans = ""
 | |
| 
 | |
|         try:
 | |
|             response = self.client.do(model=self.model_name, messages=history, system=self.system, **gen_conf).body
 | |
|             ans = response["result"]
 | |
|             return ans, self.total_token_count(response)
 | |
| 
 | |
|         except Exception as e:
 | |
|             return ans + "\n**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             self.system = system
 | |
|         gen_conf["penalty_score"] = ((gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2) + 1
 | |
|         if "max_tokens" in gen_conf:
 | |
|             del gen_conf["max_tokens"]
 | |
|         ans = ""
 | |
|         total_tokens = 0
 | |
| 
 | |
|         try:
 | |
|             response = self.client.do(model=self.model_name, messages=history, system=self.system, stream=True, **gen_conf)
 | |
|             for resp in response:
 | |
|                 resp = resp.body
 | |
|                 ans = resp["result"]
 | |
|                 total_tokens = self.total_token_count(resp)
 | |
| 
 | |
|                 yield ans
 | |
| 
 | |
|         except Exception as e:
 | |
|             return ans + "\n**ERROR**: " + str(e), 0
 | |
| 
 | |
|         yield total_tokens
 | |
| 
 | |
| 
 | |
| class AnthropicChat(Base):
 | |
|     def __init__(self, key, model_name, base_url=None):
 | |
|         super().__init__(key, model_name, base_url=None)
 | |
| 
 | |
|         import anthropic
 | |
| 
 | |
|         self.client = anthropic.Anthropic(api_key=key)
 | |
|         self.model_name = model_name
 | |
|         self.system = ""
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             self.system = system
 | |
|         if "presence_penalty" in gen_conf:
 | |
|             del gen_conf["presence_penalty"]
 | |
|         if "frequency_penalty" in gen_conf:
 | |
|             del gen_conf["frequency_penalty"]
 | |
|         gen_conf["max_tokens"] = 8192
 | |
|         if "haiku" in self.model_name or "opus" in self.model_name:
 | |
|             gen_conf["max_tokens"] = 4096
 | |
| 
 | |
|         ans = ""
 | |
|         try:
 | |
|             response = self.client.messages.create(
 | |
|                 model=self.model_name,
 | |
|                 messages=history,
 | |
|                 system=self.system,
 | |
|                 stream=False,
 | |
|                 **gen_conf,
 | |
|             ).to_dict()
 | |
|             ans = response["content"][0]["text"]
 | |
|             if response["stop_reason"] == "max_tokens":
 | |
|                 ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | |
|             return (
 | |
|                 ans,
 | |
|                 response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
 | |
|             )
 | |
|         except Exception as e:
 | |
|             return ans + "\n**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             self.system = system
 | |
|         if "presence_penalty" in gen_conf:
 | |
|             del gen_conf["presence_penalty"]
 | |
|         if "frequency_penalty" in gen_conf:
 | |
|             del gen_conf["frequency_penalty"]
 | |
|         gen_conf["max_tokens"] = 8192
 | |
|         if "haiku" in self.model_name or "opus" in self.model_name:
 | |
|             gen_conf["max_tokens"] = 4096
 | |
| 
 | |
|         ans = ""
 | |
|         total_tokens = 0
 | |
|         reasoning_start = False
 | |
|         try:
 | |
|             response = self.client.messages.create(
 | |
|                 model=self.model_name,
 | |
|                 messages=history,
 | |
|                 system=system,
 | |
|                 stream=True,
 | |
|                 **gen_conf,
 | |
|             )
 | |
|             for res in response:
 | |
|                 if res.type == "content_block_delta":
 | |
|                     if res.delta.type == "thinking_delta" and res.delta.thinking:
 | |
|                         ans = ""
 | |
|                         if not reasoning_start:
 | |
|                             reasoning_start = True
 | |
|                             ans = "<think>"
 | |
|                         ans += res.delta.thinking + "</think>"
 | |
|                     else:
 | |
|                         reasoning_start = False
 | |
|                         text = res.delta.text
 | |
|                         ans = text
 | |
|                         total_tokens += num_tokens_from_string(text)
 | |
|                     yield ans
 | |
|         except Exception as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield total_tokens
 | |
| 
 | |
| 
 | |
| class GoogleChat(Base):
 | |
|     def __init__(self, key, model_name, base_url=None):
 | |
|         super().__init__(key, model_name, base_url=None)
 | |
| 
 | |
|         import base64
 | |
| 
 | |
|         from google.oauth2 import service_account
 | |
| 
 | |
|         key = json.loads(key)
 | |
|         access_token = json.loads(base64.b64decode(key.get("google_service_account_key", "")))
 | |
|         project_id = key.get("google_project_id", "")
 | |
|         region = key.get("google_region", "")
 | |
| 
 | |
|         scopes = ["https://www.googleapis.com/auth/cloud-platform"]
 | |
|         self.model_name = model_name
 | |
|         self.system = ""
 | |
| 
 | |
|         if "claude" in self.model_name:
 | |
|             from anthropic import AnthropicVertex
 | |
|             from google.auth.transport.requests import Request
 | |
| 
 | |
|             if access_token:
 | |
|                 credits = service_account.Credentials.from_service_account_info(access_token, scopes=scopes)
 | |
|                 request = Request()
 | |
|                 credits.refresh(request)
 | |
|                 token = credits.token
 | |
|                 self.client = AnthropicVertex(region=region, project_id=project_id, access_token=token)
 | |
|             else:
 | |
|                 self.client = AnthropicVertex(region=region, project_id=project_id)
 | |
|         else:
 | |
|             import vertexai.generative_models as glm
 | |
|             from google.cloud import aiplatform
 | |
| 
 | |
|             if access_token:
 | |
|                 credits = service_account.Credentials.from_service_account_info(access_token)
 | |
|                 aiplatform.init(credentials=credits, project=project_id, location=region)
 | |
|             else:
 | |
|                 aiplatform.init(project=project_id, location=region)
 | |
|             self.client = glm.GenerativeModel(model_name=self.model_name)
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             self.system = system
 | |
| 
 | |
|         if "claude" in self.model_name:
 | |
|             if "max_tokens" in gen_conf:
 | |
|                 del gen_conf["max_tokens"]
 | |
|             try:
 | |
|                 response = self.client.messages.create(
 | |
|                     model=self.model_name,
 | |
|                     messages=history,
 | |
|                     system=self.system,
 | |
|                     stream=False,
 | |
|                     **gen_conf,
 | |
|                 ).json()
 | |
|                 ans = response["content"][0]["text"]
 | |
|                 if response["stop_reason"] == "max_tokens":
 | |
|                     ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | |
|                 return (
 | |
|                     ans,
 | |
|                     response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
 | |
|                 )
 | |
|             except Exception as e:
 | |
|                 return "\n**ERROR**: " + str(e), 0
 | |
|         else:
 | |
|             self.client._system_instruction = self.system
 | |
|             if "max_tokens" in gen_conf:
 | |
|                 gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
 | |
|             for k in list(gen_conf.keys()):
 | |
|                 if k not in ["temperature", "top_p", "max_output_tokens"]:
 | |
|                     del gen_conf[k]
 | |
|             for item in history:
 | |
|                 if "role" in item and item["role"] == "assistant":
 | |
|                     item["role"] = "model"
 | |
|                 if "content" in item:
 | |
|                     item["parts"] = item.pop("content")
 | |
|             try:
 | |
|                 response = self.client.generate_content(history, generation_config=gen_conf)
 | |
|                 ans = response.text
 | |
|                 return ans, response.usage_metadata.total_token_count
 | |
|             except Exception as e:
 | |
|                 return "**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             self.system = system
 | |
| 
 | |
|         if "claude" in self.model_name:
 | |
|             if "max_tokens" in gen_conf:
 | |
|                 del gen_conf["max_tokens"]
 | |
|             ans = ""
 | |
|             total_tokens = 0
 | |
|             try:
 | |
|                 response = self.client.messages.create(
 | |
|                     model=self.model_name,
 | |
|                     messages=history,
 | |
|                     system=self.system,
 | |
|                     stream=True,
 | |
|                     **gen_conf,
 | |
|                 )
 | |
|                 for res in response.iter_lines():
 | |
|                     res = res.decode("utf-8")
 | |
|                     if "content_block_delta" in res and "data" in res:
 | |
|                         text = json.loads(res[6:])["delta"]["text"]
 | |
|                         ans = text
 | |
|                         total_tokens += num_tokens_from_string(text)
 | |
|             except Exception as e:
 | |
|                 yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|             yield total_tokens
 | |
|         else:
 | |
|             self.client._system_instruction = self.system
 | |
|             if "max_tokens" in gen_conf:
 | |
|                 gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
 | |
|             for k in list(gen_conf.keys()):
 | |
|                 if k not in ["temperature", "top_p", "max_output_tokens"]:
 | |
|                     del gen_conf[k]
 | |
|             for item in history:
 | |
|                 if "role" in item and item["role"] == "assistant":
 | |
|                     item["role"] = "model"
 | |
|                 if "content" in item:
 | |
|                     item["parts"] = item.pop("content")
 | |
|             ans = ""
 | |
|             try:
 | |
|                 response = self.model.generate_content(history, generation_config=gen_conf, stream=True)
 | |
|                 for resp in response:
 | |
|                     ans = resp.text
 | |
|                     yield ans
 | |
| 
 | |
|             except Exception as e:
 | |
|                 yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|             yield response._chunks[-1].usage_metadata.total_token_count
 | |
| 
 | |
| 
 | |
| class GPUStackChat(Base):
 | |
|     def __init__(self, key=None, model_name="", base_url=""):
 | |
|         if not base_url:
 | |
|             raise ValueError("Local llm url cannot be None")
 | |
|         if base_url.split("/")[-1] != "v1":
 | |
|             base_url = os.path.join(base_url, "v1")
 | |
|         super().__init__(key, model_name, base_url)
 |