mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-10-31 09:50:00 +00:00 
			
		
		
		
	 46b5e32cd7
			
		
	
	
		46b5e32cd7
		
			
		
	
	
	
	
		
			
			### What problem does this PR solve? https://github.com/infiniflow/ragflow/issues/6138 This PR is going to support vision llm for gpustack, modify url path from `/v1-openai` to `/v1` ### Type of change - [x] New Feature (non-breaking change which adds functionality)
		
			
				
	
	
		
			840 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			840 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #
 | |
| #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 | |
| #
 | |
| #  Licensed under the Apache License, Version 2.0 (the "License");
 | |
| #  you may not use this file except in compliance with the License.
 | |
| #  You may obtain a copy of the License at
 | |
| #
 | |
| #      http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| #  Unless required by applicable law or agreed to in writing, software
 | |
| #  distributed under the License is distributed on an "AS IS" BASIS,
 | |
| #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| #  See the License for the specific language governing permissions and
 | |
| #  limitations under the License.
 | |
| #
 | |
| import logging
 | |
| import re
 | |
| import threading
 | |
| import requests
 | |
| from huggingface_hub import snapshot_download
 | |
| from zhipuai import ZhipuAI
 | |
| import os
 | |
| from abc import ABC
 | |
| from ollama import Client
 | |
| import dashscope
 | |
| from openai import OpenAI
 | |
| import numpy as np
 | |
| import asyncio
 | |
| 
 | |
| from api import settings
 | |
| from api.utils.file_utils import get_home_cache_dir
 | |
| from rag.utils import num_tokens_from_string, truncate
 | |
| import google.generativeai as genai
 | |
| import json
 | |
| 
 | |
| 
 | |
| class Base(ABC):
 | |
|     def __init__(self, key, model_name):
 | |
|         pass
 | |
| 
 | |
|     def encode(self, texts: list):
 | |
|         raise NotImplementedError("Please implement encode method!")
 | |
| 
 | |
|     def encode_queries(self, text: str):
 | |
|         raise NotImplementedError("Please implement encode method!")
 | |
| 
 | |
|     def total_token_count(self, resp):
 | |
|         try:
 | |
|             return resp.usage.total_tokens
 | |
|         except Exception:
 | |
|             pass
 | |
|         try:
 | |
|             return resp["usage"]["total_tokens"]
 | |
|         except Exception:
 | |
|             pass
 | |
|         return 0
 | |
| 
 | |
| 
 | |
| class DefaultEmbedding(Base):
 | |
|     _model = None
 | |
|     _model_name = ""
 | |
|     _model_lock = threading.Lock()
 | |
| 
 | |
|     def __init__(self, key, model_name, **kwargs):
 | |
|         """
 | |
|         If you have trouble downloading HuggingFace models, -_^ this might help!!
 | |
| 
 | |
|         For Linux:
 | |
|         export HF_ENDPOINT=https://hf-mirror.com
 | |
| 
 | |
|         For Windows:
 | |
|         Good luck
 | |
|         ^_-
 | |
| 
 | |
|         """
 | |
|         if not settings.LIGHTEN:
 | |
|             with DefaultEmbedding._model_lock:
 | |
|                 from FlagEmbedding import FlagModel
 | |
|                 import torch
 | |
|                 if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
 | |
|                     try:
 | |
|                         DefaultEmbedding._model = FlagModel(os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
 | |
|                                                             query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
 | |
|                                                             use_fp16=torch.cuda.is_available())
 | |
|                         DefaultEmbedding._model_name = model_name
 | |
|                     except Exception:
 | |
|                         model_dir = snapshot_download(repo_id="BAAI/bge-large-zh-v1.5",
 | |
|                                                       local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
 | |
|                                                       local_dir_use_symlinks=False)
 | |
|                         DefaultEmbedding._model = FlagModel(model_dir,
 | |
|                                                             query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
 | |
|                                                             use_fp16=torch.cuda.is_available())
 | |
|         self._model = DefaultEmbedding._model
 | |
|         self._model_name = DefaultEmbedding._model_name
 | |
| 
 | |
|     def encode(self, texts: list):
 | |
|         batch_size = 16
 | |
|         texts = [truncate(t, 2048) for t in texts]
 | |
|         token_count = 0
 | |
|         for t in texts:
 | |
|             token_count += num_tokens_from_string(t)
 | |
|         ress = []
 | |
|         for i in range(0, len(texts), batch_size):
 | |
|             ress.extend(self._model.encode(texts[i:i + batch_size]).tolist())
 | |
|         return np.array(ress), token_count
 | |
| 
 | |
|     def encode_queries(self, text: str):
 | |
|         token_count = num_tokens_from_string(text)
 | |
|         return self._model.encode_queries([text]).tolist()[0], token_count
 | |
| 
 | |
| 
 | |
| class OpenAIEmbed(Base):
 | |
|     def __init__(self, key, model_name="text-embedding-ada-002",
 | |
|                  base_url="https://api.openai.com/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.openai.com/v1"
 | |
|         self.client = OpenAI(api_key=key, base_url=base_url)
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def encode(self, texts: list):
 | |
|         # OpenAI requires batch size <=16
 | |
|         batch_size = 16
 | |
|         texts = [truncate(t, 8191) for t in texts]
 | |
|         ress = []
 | |
|         total_tokens = 0
 | |
|         for i in range(0, len(texts), batch_size):
 | |
|             res = self.client.embeddings.create(input=texts[i:i + batch_size],
 | |
|                                                 model=self.model_name)
 | |
|             ress.extend([d.embedding for d in res.data])
 | |
|             total_tokens += self.total_token_count(res)
 | |
|         return np.array(ress), total_tokens
 | |
| 
 | |
|     def encode_queries(self, text):
 | |
|         res = self.client.embeddings.create(input=[truncate(text, 8191)],
 | |
|                                             model=self.model_name)
 | |
|         return np.array(res.data[0].embedding), self.total_token_count(res)
 | |
| 
 | |
| 
 | |
| class LocalAIEmbed(Base):
 | |
|     def __init__(self, key, model_name, base_url):
 | |
|         if not base_url:
 | |
|             raise ValueError("Local embedding model url cannot be None")
 | |
|         if base_url.split("/")[-1] != "v1":
 | |
|             base_url = os.path.join(base_url, "v1")
 | |
|         self.client = OpenAI(api_key="empty", base_url=base_url)
 | |
|         self.model_name = model_name.split("___")[0]
 | |
| 
 | |
|     def encode(self, texts: list):
 | |
|         batch_size = 16
 | |
|         ress = []
 | |
|         for i in range(0, len(texts), batch_size):
 | |
|             res = self.client.embeddings.create(input=texts[i:i + batch_size], model=self.model_name)
 | |
|             ress.extend([d.embedding for d in res.data])
 | |
|         # local embedding for LmStudio donot count tokens
 | |
|         return np.array(ress), 1024
 | |
| 
 | |
|     def encode_queries(self, text):
 | |
|         embds, cnt = self.encode([text])
 | |
|         return np.array(embds[0]), cnt
 | |
| 
 | |
| 
 | |
| class AzureEmbed(OpenAIEmbed):
 | |
|     def __init__(self, key, model_name, **kwargs):
 | |
|         from openai.lib.azure import AzureOpenAI
 | |
|         api_key = json.loads(key).get('api_key', '')
 | |
|         api_version = json.loads(key).get('api_version', '2024-02-01')
 | |
|         self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
 | |
|         self.model_name = model_name
 | |
| 
 | |
| 
 | |
| class BaiChuanEmbed(OpenAIEmbed):
 | |
|     def __init__(self, key,
 | |
|                  model_name='Baichuan-Text-Embedding',
 | |
|                  base_url='https://api.baichuan-ai.com/v1'):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.baichuan-ai.com/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class QWenEmbed(Base):
 | |
|     def __init__(self, key, model_name="text_embedding_v2", **kwargs):
 | |
|         self.key = key
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def encode(self, texts: list):
 | |
|         import dashscope
 | |
|         batch_size = 4
 | |
|         try:
 | |
|             res = []
 | |
|             token_count = 0
 | |
|             texts = [truncate(t, 2048) for t in texts]
 | |
|             for i in range(0, len(texts), batch_size):
 | |
|                 resp = dashscope.TextEmbedding.call(
 | |
|                     model=self.model_name,
 | |
|                     input=texts[i:i + batch_size],
 | |
|                     api_key=self.key,
 | |
|                     text_type="document"
 | |
|                 )
 | |
|                 embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
 | |
|                 for e in resp["output"]["embeddings"]:
 | |
|                     embds[e["text_index"]] = e["embedding"]
 | |
|                 res.extend(embds)
 | |
|                 token_count += self.total_token_count(resp)
 | |
|             return np.array(res), token_count
 | |
|         except Exception as e:
 | |
|             raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
 | |
|         return np.array([]), 0
 | |
| 
 | |
|     def encode_queries(self, text):
 | |
|         try:
 | |
|             resp = dashscope.TextEmbedding.call(
 | |
|                 model=self.model_name,
 | |
|                 input=text[:2048],
 | |
|                 api_key=self.key,
 | |
|                 text_type="query"
 | |
|             )
 | |
|             return np.array(resp["output"]["embeddings"][0]
 | |
|                             ["embedding"]), self.total_token_count(resp)
 | |
|         except Exception:
 | |
|             raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
 | |
|         return np.array([]), 0
 | |
| 
 | |
| 
 | |
| class ZhipuEmbed(Base):
 | |
|     def __init__(self, key, model_name="embedding-2", **kwargs):
 | |
|         self.client = ZhipuAI(api_key=key)
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def encode(self, texts: list):
 | |
|         arr = []
 | |
|         tks_num = 0
 | |
|         MAX_LEN = -1
 | |
|         if self.model_name.lower() == "embedding-2":
 | |
|             MAX_LEN = 512
 | |
|         if self.model_name.lower() == "embedding-3":
 | |
|             MAX_LEN = 3072
 | |
|         if MAX_LEN > 0:
 | |
|             texts = [truncate(t, MAX_LEN) for t in texts]
 | |
| 
 | |
|         for txt in texts:
 | |
|             res = self.client.embeddings.create(input=txt,
 | |
|                                                 model=self.model_name)
 | |
|             arr.append(res.data[0].embedding)
 | |
|             tks_num += self.total_token_count(res)
 | |
|         return np.array(arr), tks_num
 | |
| 
 | |
|     def encode_queries(self, text):
 | |
|         res = self.client.embeddings.create(input=text,
 | |
|                                             model=self.model_name)
 | |
|         return np.array(res.data[0].embedding), self.total_token_count(res)
 | |
| 
 | |
| 
 | |
| class OllamaEmbed(Base):
 | |
|     def __init__(self, key, model_name, **kwargs):
 | |
|         self.client = Client(host=kwargs["base_url"]) if not key or key == "x" else \
 | |
|             Client(host=kwargs["base_url"], headers={"Authorization": f"Bear {key}"})
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def encode(self, texts: list):
 | |
|         arr = []
 | |
|         tks_num = 0
 | |
|         for txt in texts:
 | |
|             res = self.client.embeddings(prompt=txt,
 | |
|                                          model=self.model_name,
 | |
|                                          options={"use_mmap": True})
 | |
|             arr.append(res["embedding"])
 | |
|             tks_num += 128
 | |
|         return np.array(arr), tks_num
 | |
| 
 | |
|     def encode_queries(self, text):
 | |
|         res = self.client.embeddings(prompt=text,
 | |
|                                      model=self.model_name,
 | |
|                                      options={"use_mmap": True})
 | |
|         return np.array(res["embedding"]), 128
 | |
| 
 | |
| 
 | |
| class FastEmbed(DefaultEmbedding):
 | |
|     
 | |
|     def __init__(
 | |
|             self,
 | |
|             key: str | None = None,
 | |
|             model_name: str = "BAAI/bge-small-en-v1.5",
 | |
|             cache_dir: str | None = None,
 | |
|             threads: int | None = None,
 | |
|             **kwargs,
 | |
|     ):
 | |
|         if not settings.LIGHTEN:
 | |
|             with FastEmbed._model_lock:
 | |
|                 from fastembed import TextEmbedding
 | |
|                 if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
 | |
|                     try:
 | |
|                         DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
 | |
|                         DefaultEmbedding._model_name = model_name
 | |
|                     except Exception:
 | |
|                         cache_dir = snapshot_download(repo_id="BAAI/bge-small-en-v1.5",
 | |
|                                                       local_dir=os.path.join(get_home_cache_dir(),
 | |
|                                                                              re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
 | |
|                                                       local_dir_use_symlinks=False)
 | |
|                         DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
 | |
|         self._model = DefaultEmbedding._model
 | |
|         self._model_name = model_name
 | |
| 
 | |
|     def encode(self, texts: list):
 | |
|         # Using the internal tokenizer to encode the texts and get the total
 | |
|         # number of tokens
 | |
|         encodings = self._model.model.tokenizer.encode_batch(texts)
 | |
|         total_tokens = sum(len(e) for e in encodings)
 | |
| 
 | |
|         embeddings = [e.tolist() for e in self._model.embed(texts, batch_size=16)]
 | |
| 
 | |
|         return np.array(embeddings), total_tokens
 | |
| 
 | |
|     def encode_queries(self, text: str):
 | |
|         # Using the internal tokenizer to encode the texts and get the total
 | |
|         # number of tokens
 | |
|         encoding = self._model.model.tokenizer.encode(text)
 | |
|         embedding = next(self._model.query_embed(text)).tolist()
 | |
| 
 | |
|         return np.array(embedding), len(encoding.ids)
 | |
| 
 | |
| 
 | |
| class XinferenceEmbed(Base):
 | |
|     def __init__(self, key, model_name="", base_url=""):
 | |
|         if base_url.split("/")[-1] != "v1":
 | |
|             base_url = os.path.join(base_url, "v1")
 | |
|         self.client = OpenAI(api_key=key, base_url=base_url)
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def encode(self, texts: list):
 | |
|         batch_size = 16
 | |
|         ress = []
 | |
|         total_tokens = 0
 | |
|         for i in range(0, len(texts), batch_size):
 | |
|             res = self.client.embeddings.create(input=texts[i:i + batch_size], model=self.model_name)
 | |
|             ress.extend([d.embedding for d in res.data])
 | |
|             total_tokens += self.total_token_count(res)
 | |
|         return np.array(ress), total_tokens
 | |
| 
 | |
|     def encode_queries(self, text):
 | |
|         res = self.client.embeddings.create(input=[text],
 | |
|                                             model=self.model_name)
 | |
|         return np.array(res.data[0].embedding), self.total_token_count(res)
 | |
| 
 | |
| 
 | |
| class YoudaoEmbed(Base):
 | |
|     _client = None
 | |
| 
 | |
|     def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
 | |
|         if not settings.LIGHTEN and not YoudaoEmbed._client:
 | |
|             from BCEmbedding import EmbeddingModel as qanthing
 | |
|             try:
 | |
|                 logging.info("LOADING BCE...")
 | |
|                 YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(
 | |
|                     get_home_cache_dir(),
 | |
|                     "bce-embedding-base_v1"))
 | |
|             except Exception:
 | |
|                 YoudaoEmbed._client = qanthing(
 | |
|                     model_name_or_path=model_name.replace(
 | |
|                         "maidalun1020", "InfiniFlow"))
 | |
| 
 | |
|     def encode(self, texts: list):
 | |
|         batch_size = 10
 | |
|         res = []
 | |
|         token_count = 0
 | |
|         for t in texts:
 | |
|             token_count += num_tokens_from_string(t)
 | |
|         for i in range(0, len(texts), batch_size):
 | |
|             embds = YoudaoEmbed._client.encode(texts[i:i + batch_size])
 | |
|             res.extend(embds)
 | |
|         return np.array(res), token_count
 | |
| 
 | |
|     def encode_queries(self, text):
 | |
|         embds = YoudaoEmbed._client.encode([text])
 | |
|         return np.array(embds[0]), num_tokens_from_string(text)
 | |
| 
 | |
| 
 | |
| class JinaEmbed(Base):
 | |
|     def __init__(self, key, model_name="jina-embeddings-v3",
 | |
|                  base_url="https://api.jina.ai/v1/embeddings"):
 | |
| 
 | |
|         self.base_url = "https://api.jina.ai/v1/embeddings"
 | |
|         self.headers = {
 | |
|             "Content-Type": "application/json",
 | |
|             "Authorization": f"Bearer {key}"
 | |
|         }
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def encode(self, texts: list):
 | |
|         texts = [truncate(t, 8196) for t in texts]
 | |
|         batch_size = 16
 | |
|         ress = []
 | |
|         token_count = 0
 | |
|         for i in range(0, len(texts), batch_size):
 | |
|             data = {
 | |
|                 "model": self.model_name,
 | |
|                 "input": texts[i:i + batch_size],
 | |
|                 'encoding_type': 'float'
 | |
|             }
 | |
|             res = requests.post(self.base_url, headers=self.headers, json=data).json()
 | |
|             ress.extend([d["embedding"] for d in res["data"]])
 | |
|             token_count += self.total_token_count(res)
 | |
|         return np.array(ress), token_count
 | |
| 
 | |
|     def encode_queries(self, text):
 | |
|         embds, cnt = self.encode([text])
 | |
|         return np.array(embds[0]), cnt
 | |
| 
 | |
| 
 | |
| class InfinityEmbed(Base):
 | |
|     _model = None
 | |
| 
 | |
|     def __init__(
 | |
|             self,
 | |
|             model_names: list[str] = ("BAAI/bge-small-en-v1.5",),
 | |
|             engine_kwargs: dict = {},
 | |
|             key = None,
 | |
|     ):
 | |
| 
 | |
|         from infinity_emb import EngineArgs
 | |
|         from infinity_emb.engine import AsyncEngineArray
 | |
| 
 | |
|         self._default_model = model_names[0]
 | |
|         self.engine_array = AsyncEngineArray.from_args([EngineArgs(model_name_or_path = model_name, **engine_kwargs) for model_name in model_names])
 | |
| 
 | |
|     async def _embed(self, sentences: list[str], model_name: str = ""):
 | |
|         if not model_name:
 | |
|             model_name = self._default_model
 | |
|         engine = self.engine_array[model_name]
 | |
|         was_already_running = engine.is_running
 | |
|         if not was_already_running:
 | |
|             await engine.astart()
 | |
|         embeddings, usage = await engine.embed(sentences=sentences)
 | |
|         if not was_already_running:
 | |
|             await engine.astop()
 | |
|         return embeddings, usage
 | |
| 
 | |
|     def encode(self, texts: list[str], model_name: str = "") -> tuple[np.ndarray, int]:
 | |
|         # Using the internal tokenizer to encode the texts and get the total
 | |
|         # number of tokens
 | |
|         embeddings, usage = asyncio.run(self._embed(texts, model_name))
 | |
|         return np.array(embeddings), usage
 | |
| 
 | |
|     def encode_queries(self, text: str) -> tuple[np.ndarray, int]:
 | |
|         # Using the internal tokenizer to encode the texts and get the total
 | |
|         # number of tokens
 | |
|         return self.encode([text])
 | |
| 
 | |
| 
 | |
| class MistralEmbed(Base):
 | |
|     def __init__(self, key, model_name="mistral-embed",
 | |
|                  base_url=None):
 | |
|         from mistralai.client import MistralClient
 | |
|         self.client = MistralClient(api_key=key)
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def encode(self, texts: list):
 | |
|         texts = [truncate(t, 8196) for t in texts]
 | |
|         batch_size = 16
 | |
|         ress = []
 | |
|         token_count = 0
 | |
|         for i in range(0, len(texts), batch_size):
 | |
|             res = self.client.embeddings(input=texts[i:i + batch_size],
 | |
|                                         model=self.model_name)
 | |
|             ress.extend([d.embedding for d in res.data])
 | |
|             token_count += self.total_token_count(res)
 | |
|         return np.array(ress), token_count
 | |
| 
 | |
|     def encode_queries(self, text):
 | |
|         res = self.client.embeddings(input=[truncate(text, 8196)],
 | |
|                                             model=self.model_name)
 | |
|         return np.array(res.data[0].embedding), self.total_token_count(res)
 | |
| 
 | |
| 
 | |
| class BedrockEmbed(Base):
 | |
|     def __init__(self, key, model_name,
 | |
|                  **kwargs):
 | |
|         import boto3
 | |
|         self.bedrock_ak = json.loads(key).get('bedrock_ak', '')
 | |
|         self.bedrock_sk = json.loads(key).get('bedrock_sk', '')
 | |
|         self.bedrock_region = json.loads(key).get('bedrock_region', '')
 | |
|         self.model_name = model_name
 | |
|         
 | |
|         if self.bedrock_ak == '' or self.bedrock_sk == '' or self.bedrock_region == '':
 | |
|             # Try to create a client using the default credentials (AWS_PROFILE, AWS_DEFAULT_REGION, etc.)
 | |
|             self.client = boto3.client('bedrock-runtime')
 | |
|         else:
 | |
|             self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
 | |
|                                     aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
 | |
| 
 | |
|     def encode(self, texts: list):
 | |
|         texts = [truncate(t, 8196) for t in texts]
 | |
|         embeddings = []
 | |
|         token_count = 0
 | |
|         for text in texts:
 | |
|             if self.model_name.split('.')[0] == 'amazon':
 | |
|                 body = {"inputText": text}
 | |
|             elif self.model_name.split('.')[0] == 'cohere':
 | |
|                 body = {"texts": [text], "input_type": 'search_document'}
 | |
| 
 | |
|             response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
 | |
|             model_response = json.loads(response["body"].read())
 | |
|             embeddings.extend([model_response["embedding"]])
 | |
|             token_count += num_tokens_from_string(text)
 | |
| 
 | |
|         return np.array(embeddings), token_count
 | |
| 
 | |
|     def encode_queries(self, text):
 | |
|         embeddings = []
 | |
|         token_count = num_tokens_from_string(text)
 | |
|         if self.model_name.split('.')[0] == 'amazon':
 | |
|             body = {"inputText": truncate(text, 8196)}
 | |
|         elif self.model_name.split('.')[0] == 'cohere':
 | |
|             body = {"texts": [truncate(text, 8196)], "input_type": 'search_query'}
 | |
| 
 | |
|         response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
 | |
|         model_response = json.loads(response["body"].read())
 | |
|         embeddings.extend(model_response["embedding"])
 | |
| 
 | |
|         return np.array(embeddings), token_count
 | |
| 
 | |
| 
 | |
| class GeminiEmbed(Base):
 | |
|     def __init__(self, key, model_name='models/text-embedding-004',
 | |
|                  **kwargs):
 | |
|         self.key = key
 | |
|         self.model_name = 'models/' + model_name
 | |
|         
 | |
|     def encode(self, texts: list):
 | |
|         texts = [truncate(t, 2048) for t in texts]
 | |
|         token_count = sum(num_tokens_from_string(text) for text in texts)
 | |
|         genai.configure(api_key=self.key)
 | |
|         batch_size = 16
 | |
|         ress = []
 | |
|         for i in range(0, len(texts), batch_size):
 | |
|             result = genai.embed_content(
 | |
|                 model=self.model_name,
 | |
|                 content=texts[i: i + batch_size],
 | |
|                 task_type="retrieval_document",
 | |
|                 title="Embedding of single string")
 | |
|             ress.extend(result['embedding'])
 | |
|         return np.array(ress),token_count
 | |
|     
 | |
|     def encode_queries(self, text):
 | |
|         genai.configure(api_key=self.key)
 | |
|         result = genai.embed_content(
 | |
|             model=self.model_name,
 | |
|             content=truncate(text,2048),
 | |
|             task_type="retrieval_document",
 | |
|             title="Embedding of single string")
 | |
|         token_count = num_tokens_from_string(text)
 | |
|         return np.array(result['embedding']), token_count
 | |
| 
 | |
| 
 | |
| class NvidiaEmbed(Base):
 | |
|     def __init__(
 | |
|         self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings"
 | |
|     ):
 | |
|         if not base_url:
 | |
|             base_url = "https://integrate.api.nvidia.com/v1/embeddings"
 | |
|         self.api_key = key
 | |
|         self.base_url = base_url
 | |
|         self.headers = {
 | |
|             "accept": "application/json",
 | |
|             "Content-Type": "application/json",
 | |
|             "authorization": f"Bearer {self.api_key}",
 | |
|         }
 | |
|         self.model_name = model_name
 | |
|         if model_name == "nvidia/embed-qa-4":
 | |
|             self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings"
 | |
|             self.model_name = "NV-Embed-QA"
 | |
|         if model_name == "snowflake/arctic-embed-l":
 | |
|             self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings"
 | |
| 
 | |
|     def encode(self, texts: list):
 | |
|         batch_size = 16
 | |
|         ress = []
 | |
|         token_count = 0
 | |
|         for i in range(0, len(texts), batch_size):
 | |
|             payload = {
 | |
|                 "input": texts[i : i + batch_size],
 | |
|                 "input_type": "query",
 | |
|                 "model": self.model_name,
 | |
|                 "encoding_format": "float",
 | |
|                 "truncate": "END",
 | |
|             }
 | |
|             res = requests.post(self.base_url, headers=self.headers, json=payload).json()
 | |
|             ress.extend([d["embedding"] for d in res["data"]])
 | |
|             token_count += self.total_token_count(res)
 | |
|         return np.array(ress), token_count
 | |
| 
 | |
|     def encode_queries(self, text):
 | |
|         embds, cnt = self.encode([text])
 | |
|         return np.array(embds[0]), cnt
 | |
| 
 | |
| 
 | |
| class LmStudioEmbed(LocalAIEmbed):
 | |
|     def __init__(self, key, model_name, base_url):
 | |
|         if not base_url:
 | |
|             raise ValueError("Local llm url cannot be None")
 | |
|         if base_url.split("/")[-1] != "v1":
 | |
|             base_url = os.path.join(base_url, "v1")
 | |
|         self.client = OpenAI(api_key="lm-studio", base_url=base_url)
 | |
|         self.model_name = model_name
 | |
| 
 | |
| 
 | |
| class OpenAI_APIEmbed(OpenAIEmbed):
 | |
|     def __init__(self, key, model_name, base_url):
 | |
|         if not base_url:
 | |
|             raise ValueError("url cannot be None")
 | |
|         if base_url.split("/")[-1] != "v1":
 | |
|             base_url = os.path.join(base_url, "v1")
 | |
|         self.client = OpenAI(api_key=key, base_url=base_url)
 | |
|         self.model_name = model_name.split("___")[0]
 | |
| 
 | |
| 
 | |
| class CoHereEmbed(Base):
 | |
|     def __init__(self, key, model_name, base_url=None):
 | |
|         from cohere import Client
 | |
| 
 | |
|         self.client = Client(api_key=key)
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def encode(self, texts: list):
 | |
|         batch_size = 16
 | |
|         ress = []
 | |
|         token_count = 0
 | |
|         for i in range(0, len(texts), batch_size):
 | |
|             res = self.client.embed(
 | |
|                 texts=texts[i : i + batch_size],
 | |
|                 model=self.model_name,
 | |
|                 input_type="search_document",
 | |
|                 embedding_types=["float"],
 | |
|             )
 | |
|             ress.extend([d for d in res.embeddings.float])
 | |
|             token_count += res.meta.billed_units.input_tokens
 | |
|         return np.array(ress), token_count
 | |
| 
 | |
|     def encode_queries(self, text):
 | |
|         res = self.client.embed(
 | |
|             texts=[text],
 | |
|             model=self.model_name,
 | |
|             input_type="search_query",
 | |
|             embedding_types=["float"],
 | |
|         )
 | |
|         return np.array(res.embeddings.float[0]), int(
 | |
|             res.meta.billed_units.input_tokens
 | |
|         )
 | |
| 
 | |
| 
 | |
| class TogetherAIEmbed(OpenAIEmbed):
 | |
|     def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.together.xyz/v1"
 | |
|         super().__init__(key, model_name, base_url=base_url)
 | |
| 
 | |
| 
 | |
| class PerfXCloudEmbed(OpenAIEmbed):
 | |
|     def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://cloud.perfxlab.cn/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class UpstageEmbed(OpenAIEmbed):
 | |
|     def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.upstage.ai/v1/solar"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class SILICONFLOWEmbed(Base):
 | |
|     def __init__(
 | |
|         self, key, model_name, base_url="https://api.siliconflow.cn/v1/embeddings"
 | |
|     ):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.siliconflow.cn/v1/embeddings"
 | |
|         self.headers = {
 | |
|             "accept": "application/json",
 | |
|             "content-type": "application/json",
 | |
|             "authorization": f"Bearer {key}",
 | |
|         }
 | |
|         self.base_url = base_url
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def encode(self, texts: list):
 | |
|         batch_size = 16
 | |
|         ress = []
 | |
|         token_count = 0
 | |
|         for i in range(0, len(texts), batch_size):
 | |
|             texts_batch = texts[i : i + batch_size]
 | |
|             payload = {
 | |
|                 "model": self.model_name,
 | |
|                 "input": texts_batch,
 | |
|                 "encoding_format": "float",
 | |
|             }
 | |
|             res = requests.post(self.base_url, json=payload, headers=self.headers).json()
 | |
|             if "data" not in res or not isinstance(res["data"], list) or len(res["data"]) != len(texts_batch):
 | |
|                 raise ValueError(f"SILICONFLOWEmbed.encode got invalid response from {self.base_url}")
 | |
|             ress.extend([d["embedding"] for d in res["data"]])
 | |
|             token_count += self.total_token_count(res)
 | |
|         return np.array(ress), token_count
 | |
| 
 | |
|     def encode_queries(self, text):
 | |
|         payload = {
 | |
|             "model": self.model_name,
 | |
|             "input": text,
 | |
|             "encoding_format": "float",
 | |
|         }
 | |
|         res = requests.post(self.base_url, json=payload, headers=self.headers).json()
 | |
|         if "data" not in res or not isinstance(res["data"], list) or len(res["data"])!= 1:
 | |
|             raise ValueError(f"SILICONFLOWEmbed.encode_queries got invalid response from {self.base_url}")
 | |
|         return np.array(res["data"][0]["embedding"]), self.total_token_count(res)
 | |
| 
 | |
| 
 | |
| class ReplicateEmbed(Base):
 | |
|     def __init__(self, key, model_name, base_url=None):
 | |
|         from replicate.client import Client
 | |
| 
 | |
|         self.model_name = model_name
 | |
|         self.client = Client(api_token=key)
 | |
| 
 | |
|     def encode(self, texts: list):
 | |
|         batch_size = 16
 | |
|         token_count = sum([num_tokens_from_string(text) for text in texts])
 | |
|         ress = []
 | |
|         for i in range(0, len(texts), batch_size):
 | |
|             res = self.client.run(self.model_name, input={"texts": texts[i : i + batch_size]})
 | |
|             ress.extend(res)
 | |
|         return np.array(ress), token_count
 | |
| 
 | |
|     def encode_queries(self, text):
 | |
|         res = self.client.embed(self.model_name, input={"texts": [text]})
 | |
|         return np.array(res), num_tokens_from_string(text)
 | |
| 
 | |
| 
 | |
| class BaiduYiyanEmbed(Base):
 | |
|     def __init__(self, key, model_name, base_url=None):
 | |
|         import qianfan
 | |
| 
 | |
|         key = json.loads(key)
 | |
|         ak = key.get("yiyan_ak", "")
 | |
|         sk = key.get("yiyan_sk", "")
 | |
|         self.client = qianfan.Embedding(ak=ak, sk=sk)
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def encode(self, texts: list, batch_size=16):
 | |
|         res = self.client.do(model=self.model_name, texts=texts).body
 | |
|         return (
 | |
|             np.array([r["embedding"] for r in res["data"]]),
 | |
|             self.total_token_count(res),
 | |
|         )
 | |
| 
 | |
|     def encode_queries(self, text):
 | |
|         res = self.client.do(model=self.model_name, texts=[text]).body
 | |
|         return (
 | |
|             np.array([r["embedding"] for r in res["data"]]),
 | |
|             self.total_token_count(res),
 | |
|         )
 | |
| 
 | |
| 
 | |
| class VoyageEmbed(Base):
 | |
|     def __init__(self, key, model_name, base_url=None):
 | |
|         import voyageai
 | |
| 
 | |
|         self.client = voyageai.Client(api_key=key)
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def encode(self, texts: list):
 | |
|         batch_size = 16
 | |
|         ress = []
 | |
|         token_count = 0
 | |
|         for i in range(0, len(texts), batch_size):
 | |
|             res = self.client.embed(
 | |
|                 texts=texts[i : i + batch_size], model=self.model_name, input_type="document"
 | |
|             )
 | |
|             ress.extend(res.embeddings)
 | |
|             token_count += res.total_tokens
 | |
|         return np.array(ress), token_count
 | |
| 
 | |
|     def encode_queries(self, text):
 | |
|         res = self.client.embed(
 | |
|             texts=text, model=self.model_name, input_type="query"
 | |
|             )
 | |
|         return np.array(res.embeddings)[0], res.total_tokens
 | |
| 
 | |
| 
 | |
| class HuggingFaceEmbed(Base):
 | |
|     def __init__(self, key, model_name, base_url=None):
 | |
|         if not model_name:
 | |
|             raise ValueError("Model name cannot be None")
 | |
|         self.key = key
 | |
|         self.model_name = model_name.split("___")[0]
 | |
|         self.base_url = base_url or "http://127.0.0.1:8080"
 | |
| 
 | |
|     def encode(self, texts: list):
 | |
|         embeddings = []
 | |
|         for text in texts:
 | |
|             response = requests.post(
 | |
|                 f"{self.base_url}/embed",
 | |
|                 json={"inputs": text},
 | |
|                 headers={'Content-Type': 'application/json'}
 | |
|             )
 | |
|             if response.status_code == 200:
 | |
|                 embedding = response.json()
 | |
|                 embeddings.append(embedding[0])
 | |
|             else:
 | |
|                 raise Exception(f"Error: {response.status_code} - {response.text}")
 | |
|         return np.array(embeddings), sum([num_tokens_from_string(text) for text in texts])
 | |
| 
 | |
|     def encode_queries(self, text):
 | |
|         response = requests.post(
 | |
|             f"{self.base_url}/embed",
 | |
|             json={"inputs": text},
 | |
|             headers={'Content-Type': 'application/json'}
 | |
|         )
 | |
|         if response.status_code == 200:
 | |
|             embedding = response.json()
 | |
|             return np.array(embedding[0]), num_tokens_from_string(text)
 | |
|         else:
 | |
|             raise Exception(f"Error: {response.status_code} - {response.text}")
 | |
| 
 | |
| 
 | |
| class VolcEngineEmbed(OpenAIEmbed):
 | |
|     def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3"):
 | |
|         if not base_url:
 | |
|             base_url = "https://ark.cn-beijing.volces.com/api/v3"
 | |
|         ark_api_key = json.loads(key).get('ark_api_key', '')
 | |
|         model_name = json.loads(key).get('ep_id', '') + json.loads(key).get('endpoint_id', '')
 | |
|         super().__init__(ark_api_key,model_name,base_url)
 | |
| 
 | |
| class GPUStackEmbed(OpenAIEmbed):
 | |
|     def __init__(self, key, model_name, base_url):
 | |
|         if not base_url:
 | |
|             raise ValueError("url cannot be None")
 | |
|         if base_url.split("/")[-1] != "v1":
 | |
|             base_url = os.path.join(base_url, "v1")
 | |
| 
 | |
|         self.client = OpenAI(api_key=key, base_url=base_url)
 | |
|         self.model_name = model_name
 |