mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-10-26 07:19:23 +00:00 
			
		
		
		
	 c6e723f2ee
			
		
	
	
		c6e723f2ee
		
			
		
	
	
	
	
		
			
			### What problem does this PR solve? #2270 ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
		
			
				
	
	
		
			267 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			267 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2024 Microsoft Corporation.
 | |
| # Licensed under the MIT License
 | |
| """
 | |
| Reference:
 | |
|  - [graphrag](https://github.com/microsoft/graphrag)
 | |
| """
 | |
| 
 | |
| import argparse
 | |
| import json
 | |
| import logging
 | |
| import re
 | |
| import traceback
 | |
| from dataclasses import dataclass
 | |
| from typing import Any
 | |
| 
 | |
| import tiktoken
 | |
| 
 | |
| from graphrag.claim_prompt import CLAIM_EXTRACTION_PROMPT, CONTINUE_PROMPT, LOOP_PROMPT
 | |
| from rag.llm.chat_model import Base as CompletionLLM
 | |
| from graphrag.utils import ErrorHandlerFn, perform_variable_replacements
 | |
| 
 | |
| DEFAULT_TUPLE_DELIMITER = "<|>"
 | |
| DEFAULT_RECORD_DELIMITER = "##"
 | |
| DEFAULT_COMPLETION_DELIMITER = "<|COMPLETE|>"
 | |
| CLAIM_MAX_GLEANINGS = 1
 | |
| log = logging.getLogger(__name__)
 | |
| 
 | |
| 
 | |
| @dataclass
 | |
| class ClaimExtractorResult:
 | |
|     """Claim extractor result class definition."""
 | |
| 
 | |
|     output: list[dict]
 | |
|     source_docs: dict[str, Any]
 | |
| 
 | |
| 
 | |
| class ClaimExtractor:
 | |
|     """Claim extractor class definition."""
 | |
| 
 | |
|     _llm: CompletionLLM
 | |
|     _extraction_prompt: str
 | |
|     _summary_prompt: str
 | |
|     _output_formatter_prompt: str
 | |
|     _input_text_key: str
 | |
|     _input_entity_spec_key: str
 | |
|     _input_claim_description_key: str
 | |
|     _tuple_delimiter_key: str
 | |
|     _record_delimiter_key: str
 | |
|     _completion_delimiter_key: str
 | |
|     _max_gleanings: int
 | |
|     _on_error: ErrorHandlerFn
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         llm_invoker: CompletionLLM,
 | |
|         extraction_prompt: str | None = None,
 | |
|         input_text_key: str | None = None,
 | |
|         input_entity_spec_key: str | None = None,
 | |
|         input_claim_description_key: str | None = None,
 | |
|         input_resolved_entities_key: str | None = None,
 | |
|         tuple_delimiter_key: str | None = None,
 | |
|         record_delimiter_key: str | None = None,
 | |
|         completion_delimiter_key: str | None = None,
 | |
|         encoding_model: str | None = None,
 | |
|         max_gleanings: int | None = None,
 | |
|         on_error: ErrorHandlerFn | None = None,
 | |
|     ):
 | |
|         """Init method definition."""
 | |
|         self._llm = llm_invoker
 | |
|         self._extraction_prompt = extraction_prompt or CLAIM_EXTRACTION_PROMPT
 | |
|         self._input_text_key = input_text_key or "input_text"
 | |
|         self._input_entity_spec_key = input_entity_spec_key or "entity_specs"
 | |
|         self._tuple_delimiter_key = tuple_delimiter_key or "tuple_delimiter"
 | |
|         self._record_delimiter_key = record_delimiter_key or "record_delimiter"
 | |
|         self._completion_delimiter_key = (
 | |
|             completion_delimiter_key or "completion_delimiter"
 | |
|         )
 | |
|         self._input_claim_description_key = (
 | |
|             input_claim_description_key or "claim_description"
 | |
|         )
 | |
|         self._input_resolved_entities_key = (
 | |
|             input_resolved_entities_key or "resolved_entities"
 | |
|         )
 | |
|         self._max_gleanings = (
 | |
|             max_gleanings if max_gleanings is not None else CLAIM_MAX_GLEANINGS
 | |
|         )
 | |
|         self._on_error = on_error or (lambda _e, _s, _d: None)
 | |
| 
 | |
|         # Construct the looping arguments
 | |
|         encoding = tiktoken.get_encoding(encoding_model or "cl100k_base")
 | |
|         yes = encoding.encode("YES")
 | |
|         no = encoding.encode("NO")
 | |
|         self._loop_args = {"logit_bias": {yes[0]: 100, no[0]: 100}, "max_tokens": 1}
 | |
| 
 | |
|     def __call__(
 | |
|         self, inputs: dict[str, Any], prompt_variables: dict | None = None
 | |
|     ) -> ClaimExtractorResult:
 | |
|         """Call method definition."""
 | |
|         if prompt_variables is None:
 | |
|             prompt_variables = {}
 | |
|         texts = inputs[self._input_text_key]
 | |
|         entity_spec = str(inputs[self._input_entity_spec_key])
 | |
|         claim_description = inputs[self._input_claim_description_key]
 | |
|         resolved_entities = inputs.get(self._input_resolved_entities_key, {})
 | |
|         source_doc_map = {}
 | |
| 
 | |
|         prompt_args = {
 | |
|             self._input_entity_spec_key: entity_spec,
 | |
|             self._input_claim_description_key: claim_description,
 | |
|             self._tuple_delimiter_key: prompt_variables.get(self._tuple_delimiter_key)
 | |
|             or DEFAULT_TUPLE_DELIMITER,
 | |
|             self._record_delimiter_key: prompt_variables.get(self._record_delimiter_key)
 | |
|             or DEFAULT_RECORD_DELIMITER,
 | |
|             self._completion_delimiter_key: prompt_variables.get(
 | |
|                 self._completion_delimiter_key
 | |
|             )
 | |
|             or DEFAULT_COMPLETION_DELIMITER,
 | |
|         }
 | |
| 
 | |
|         all_claims: list[dict] = []
 | |
|         for doc_index, text in enumerate(texts):
 | |
|             document_id = f"d{doc_index}"
 | |
|             try:
 | |
|                 claims = self._process_document(prompt_args, text, doc_index)
 | |
|                 all_claims += [
 | |
|                     self._clean_claim(c, document_id, resolved_entities) for c in claims
 | |
|                 ]
 | |
|                 source_doc_map[document_id] = text
 | |
|             except Exception as e:
 | |
|                 log.exception("error extracting claim")
 | |
|                 self._on_error(
 | |
|                     e,
 | |
|                     traceback.format_exc(),
 | |
|                     {"doc_index": doc_index, "text": text},
 | |
|                 )
 | |
|                 continue
 | |
| 
 | |
|         return ClaimExtractorResult(
 | |
|             output=all_claims,
 | |
|             source_docs=source_doc_map,
 | |
|         )
 | |
| 
 | |
|     def _clean_claim(
 | |
|         self, claim: dict, document_id: str, resolved_entities: dict
 | |
|     ) -> dict:
 | |
|         # clean the parsed claims to remove any claims with status = False
 | |
|         obj = claim.get("object_id", claim.get("object"))
 | |
|         subject = claim.get("subject_id", claim.get("subject"))
 | |
| 
 | |
|         # If subject or object in resolved entities, then replace with resolved entity
 | |
|         obj = resolved_entities.get(obj, obj)
 | |
|         subject = resolved_entities.get(subject, subject)
 | |
|         claim["object_id"] = obj
 | |
|         claim["subject_id"] = subject
 | |
|         claim["doc_id"] = document_id
 | |
|         return claim
 | |
| 
 | |
|     def _process_document(
 | |
|         self, prompt_args: dict, doc, doc_index: int
 | |
|     ) -> list[dict]:
 | |
|         record_delimiter = prompt_args.get(
 | |
|             self._record_delimiter_key, DEFAULT_RECORD_DELIMITER
 | |
|         )
 | |
|         completion_delimiter = prompt_args.get(
 | |
|             self._completion_delimiter_key, DEFAULT_COMPLETION_DELIMITER
 | |
|         )
 | |
|         variables = {
 | |
|                         self._input_text_key: doc,
 | |
|                         **prompt_args,
 | |
|                     }
 | |
|         text = perform_variable_replacements(self._extraction_prompt, variables=variables)
 | |
|         gen_conf = {"temperature": 0.5}
 | |
|         results = self._llm.chat(text, [{"role": "user", "content": "Output:"}], gen_conf)
 | |
|         claims = results.strip().removesuffix(completion_delimiter)
 | |
|         history = [{"role": "system", "content": text}, {"role": "assistant", "content": results}]
 | |
| 
 | |
|         # Repeat to ensure we maximize entity count
 | |
|         for i in range(self._max_gleanings):
 | |
|             text = perform_variable_replacements(CONTINUE_PROMPT, history=history, variables=variables)
 | |
|             history.append({"role": "user", "content": text})
 | |
|             extension = self._llm.chat("", history, gen_conf)
 | |
|             claims += record_delimiter + extension.strip().removesuffix(
 | |
|                 completion_delimiter
 | |
|             )
 | |
| 
 | |
|             # If this isn't the last loop, check to see if we should continue
 | |
|             if i >= self._max_gleanings - 1:
 | |
|                 break
 | |
| 
 | |
|             history.append({"role": "assistant", "content": extension})
 | |
|             history.append({"role": "user", "content": LOOP_PROMPT})
 | |
|             continuation = self._llm.chat("", history, self._loop_args)
 | |
|             if continuation != "YES":
 | |
|                 break
 | |
| 
 | |
|         result = self._parse_claim_tuples(claims, prompt_args)
 | |
|         for r in result:
 | |
|             r["doc_id"] = f"{doc_index}"
 | |
|         return result
 | |
| 
 | |
|     def _parse_claim_tuples(
 | |
|         self, claims: str, prompt_variables: dict
 | |
|     ) -> list[dict[str, Any]]:
 | |
|         """Parse claim tuples."""
 | |
|         record_delimiter = prompt_variables.get(
 | |
|             self._record_delimiter_key, DEFAULT_RECORD_DELIMITER
 | |
|         )
 | |
|         completion_delimiter = prompt_variables.get(
 | |
|             self._completion_delimiter_key, DEFAULT_COMPLETION_DELIMITER
 | |
|         )
 | |
|         tuple_delimiter = prompt_variables.get(
 | |
|             self._tuple_delimiter_key, DEFAULT_TUPLE_DELIMITER
 | |
|         )
 | |
| 
 | |
|         def pull_field(index: int, fields: list[str]) -> str | None:
 | |
|             return fields[index].strip() if len(fields) > index else None
 | |
| 
 | |
|         result: list[dict[str, Any]] = []
 | |
|         claims_values = (
 | |
|             claims.strip().removesuffix(completion_delimiter).split(record_delimiter)
 | |
|         )
 | |
|         for claim in claims_values:
 | |
|             claim = claim.strip().removeprefix("(").removesuffix(")")
 | |
|             claim = re.sub(r".*Output:", "", claim)
 | |
| 
 | |
|             # Ignore the completion delimiter
 | |
|             if claim == completion_delimiter:
 | |
|                 continue
 | |
| 
 | |
|             claim_fields = claim.split(tuple_delimiter)
 | |
|             o = {
 | |
|                 "subject_id": pull_field(0, claim_fields),
 | |
|                 "object_id": pull_field(1, claim_fields),
 | |
|                 "type": pull_field(2, claim_fields),
 | |
|                 "status": pull_field(3, claim_fields),
 | |
|                 "start_date": pull_field(4, claim_fields),
 | |
|                 "end_date": pull_field(5, claim_fields),
 | |
|                 "description": pull_field(6, claim_fields),
 | |
|                 "source_text": pull_field(7, claim_fields),
 | |
|                 "doc_id": pull_field(8, claim_fields),
 | |
|             }
 | |
|             if any([not o["subject_id"], not o["object_id"], o["subject_id"].lower() == "none", o["object_id"] == "none"]):
 | |
|                 continue
 | |
|             result.append(o)
 | |
|         return result
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument('-t', '--tenant_id', default=False, help="Tenant ID", action='store', required=True)
 | |
|     parser.add_argument('-d', '--doc_id', default=False, help="Document ID", action='store', required=True)
 | |
|     args = parser.parse_args()
 | |
| 
 | |
|     from api.db import LLMType
 | |
|     from api.db.services.llm_service import LLMBundle
 | |
|     from api.settings import retrievaler
 | |
| 
 | |
|     ex = ClaimExtractor(LLMBundle(args.tenant_id, LLMType.CHAT))
 | |
|     docs = [d["content_with_weight"] for d in retrievaler.chunk_list(args.doc_id, args.tenant_id, max_count=12, fields=["content_with_weight"])]
 | |
|     info = {
 | |
|         "input_text": docs,
 | |
|         "entity_specs": "organization, person",
 | |
|         "claim_description": ""
 | |
|     }
 | |
|     claim = ex(info)
 | |
|     print(json.dumps(claim.output, ensure_ascii=False, indent=2))
 |