mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-11-23 21:45:39 +00:00
### What problem does this PR solve? Refine search app. ### Type of change - [x] Refactoring
481 lines
17 KiB
Python
481 lines
17 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import json
|
|
import re
|
|
import traceback
|
|
from copy import deepcopy
|
|
|
|
import trio
|
|
from flask import Response, request
|
|
from flask_login import current_user, login_required
|
|
|
|
from api import settings
|
|
from api.db import LLMType
|
|
from api.db.db_models import APIToken
|
|
from api.db.services.conversation_service import ConversationService, structure_answer
|
|
from api.db.services.dialog_service import DialogService, ask, chat
|
|
from api.db.services.knowledgebase_service import KnowledgebaseService
|
|
from api.db.services.llm_service import LLMBundle
|
|
from api.db.services.search_service import SearchService
|
|
from api.db.services.tenant_llm_service import TenantLLMService
|
|
from api.db.services.user_service import TenantService, UserTenantService
|
|
from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, validate_request
|
|
from graphrag.general.mind_map_extractor import MindMapExtractor
|
|
from rag.app.tag import label_question
|
|
from rag.prompts.prompt_template import load_prompt
|
|
from rag.prompts.prompts import chunks_format
|
|
|
|
|
|
@manager.route("/set", methods=["POST"]) # noqa: F821
|
|
@login_required
|
|
def set_conversation():
|
|
req = request.json
|
|
conv_id = req.get("conversation_id")
|
|
is_new = req.get("is_new")
|
|
name = req.get("name", "New conversation")
|
|
req["user_id"] = current_user.id
|
|
|
|
if len(name) > 255:
|
|
name = name[0:255]
|
|
|
|
del req["is_new"]
|
|
if not is_new:
|
|
del req["conversation_id"]
|
|
try:
|
|
if not ConversationService.update_by_id(conv_id, req):
|
|
return get_data_error_result(message="Conversation not found!")
|
|
e, conv = ConversationService.get_by_id(conv_id)
|
|
if not e:
|
|
return get_data_error_result(message="Fail to update a conversation!")
|
|
conv = conv.to_dict()
|
|
return get_json_result(data=conv)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
try:
|
|
e, dia = DialogService.get_by_id(req["dialog_id"])
|
|
if not e:
|
|
return get_data_error_result(message="Dialog not found")
|
|
conv = {
|
|
"id": conv_id,
|
|
"dialog_id": req["dialog_id"],
|
|
"name": name,
|
|
"message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}],
|
|
"user_id": current_user.id,
|
|
"reference": [],
|
|
}
|
|
ConversationService.save(**conv)
|
|
return get_json_result(data=conv)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route("/get", methods=["GET"]) # noqa: F821
|
|
@login_required
|
|
def get():
|
|
conv_id = request.args["conversation_id"]
|
|
try:
|
|
e, conv = ConversationService.get_by_id(conv_id)
|
|
if not e:
|
|
return get_data_error_result(message="Conversation not found!")
|
|
tenants = UserTenantService.query(user_id=current_user.id)
|
|
avatar = None
|
|
for tenant in tenants:
|
|
dialog = DialogService.query(tenant_id=tenant.tenant_id, id=conv.dialog_id)
|
|
if dialog and len(dialog) > 0:
|
|
avatar = dialog[0].icon
|
|
break
|
|
else:
|
|
return get_json_result(data=False, message="Only owner of conversation authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
|
|
|
|
for ref in conv.reference:
|
|
if isinstance(ref, list):
|
|
continue
|
|
ref["chunks"] = chunks_format(ref)
|
|
|
|
conv = conv.to_dict()
|
|
conv["avatar"] = avatar
|
|
return get_json_result(data=conv)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route("/getsse/<dialog_id>", methods=["GET"]) # type: ignore # noqa: F821
|
|
def getsse(dialog_id):
|
|
token = request.headers.get("Authorization").split()
|
|
if len(token) != 2:
|
|
return get_data_error_result(message='Authorization is not valid!"')
|
|
token = token[1]
|
|
objs = APIToken.query(beta=token)
|
|
if not objs:
|
|
return get_data_error_result(message='Authentication error: API key is invalid!"')
|
|
try:
|
|
e, conv = DialogService.get_by_id(dialog_id)
|
|
if not e:
|
|
return get_data_error_result(message="Dialog not found!")
|
|
conv = conv.to_dict()
|
|
conv["avatar"] = conv["icon"]
|
|
del conv["icon"]
|
|
return get_json_result(data=conv)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route("/rm", methods=["POST"]) # noqa: F821
|
|
@login_required
|
|
def rm():
|
|
conv_ids = request.json["conversation_ids"]
|
|
try:
|
|
for cid in conv_ids:
|
|
exist, conv = ConversationService.get_by_id(cid)
|
|
if not exist:
|
|
return get_data_error_result(message="Conversation not found!")
|
|
tenants = UserTenantService.query(user_id=current_user.id)
|
|
for tenant in tenants:
|
|
if DialogService.query(tenant_id=tenant.tenant_id, id=conv.dialog_id):
|
|
break
|
|
else:
|
|
return get_json_result(data=False, message="Only owner of conversation authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
|
|
ConversationService.delete_by_id(cid)
|
|
return get_json_result(data=True)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route("/list", methods=["GET"]) # noqa: F821
|
|
@login_required
|
|
def list_conversation():
|
|
dialog_id = request.args["dialog_id"]
|
|
try:
|
|
if not DialogService.query(tenant_id=current_user.id, id=dialog_id):
|
|
return get_json_result(data=False, message="Only owner of dialog authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
|
|
convs = ConversationService.query(dialog_id=dialog_id, order_by=ConversationService.model.create_time, reverse=True)
|
|
|
|
convs = [d.to_dict() for d in convs]
|
|
return get_json_result(data=convs)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route("/completion", methods=["POST"]) # noqa: F821
|
|
@login_required
|
|
@validate_request("conversation_id", "messages")
|
|
def completion():
|
|
req = request.json
|
|
msg = []
|
|
for m in req["messages"]:
|
|
if m["role"] == "system":
|
|
continue
|
|
if m["role"] == "assistant" and not msg:
|
|
continue
|
|
msg.append(m)
|
|
message_id = msg[-1].get("id")
|
|
chat_model_id = req.get("llm_id", "")
|
|
req.pop("llm_id", None)
|
|
|
|
chat_model_config = {}
|
|
for model_config in [
|
|
"temperature",
|
|
"top_p",
|
|
"frequency_penalty",
|
|
"presence_penalty",
|
|
"max_tokens",
|
|
]:
|
|
config = req.get(model_config)
|
|
if config:
|
|
chat_model_config[model_config] = config
|
|
|
|
try:
|
|
e, conv = ConversationService.get_by_id(req["conversation_id"])
|
|
if not e:
|
|
return get_data_error_result(message="Conversation not found!")
|
|
conv.message = deepcopy(req["messages"])
|
|
e, dia = DialogService.get_by_id(conv.dialog_id)
|
|
if not e:
|
|
return get_data_error_result(message="Dialog not found!")
|
|
del req["conversation_id"]
|
|
del req["messages"]
|
|
|
|
if not conv.reference:
|
|
conv.reference = []
|
|
conv.reference = [r for r in conv.reference if r]
|
|
conv.reference.append({"chunks": [], "doc_aggs": []})
|
|
|
|
if chat_model_id:
|
|
if not TenantLLMService.get_api_key(tenant_id=dia.tenant_id, model_name=chat_model_id):
|
|
req.pop("chat_model_id", None)
|
|
req.pop("chat_model_config", None)
|
|
return get_data_error_result(message=f"Cannot use specified model {chat_model_id}.")
|
|
dia.llm_id = chat_model_id
|
|
dia.llm_setting = chat_model_config
|
|
|
|
is_embedded = bool(chat_model_id)
|
|
def stream():
|
|
nonlocal dia, msg, req, conv
|
|
try:
|
|
for ans in chat(dia, msg, True, **req):
|
|
ans = structure_answer(conv, ans, message_id, conv.id)
|
|
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
|
|
if not is_embedded:
|
|
ConversationService.update_by_id(conv.id, conv.to_dict())
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
|
|
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
|
|
|
|
if req.get("stream", True):
|
|
resp = Response(stream(), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
|
|
else:
|
|
answer = None
|
|
for ans in chat(dia, msg, **req):
|
|
answer = structure_answer(conv, ans, message_id, conv.id)
|
|
if not is_embedded:
|
|
ConversationService.update_by_id(conv.id, conv.to_dict())
|
|
break
|
|
return get_json_result(data=answer)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route("/tts", methods=["POST"]) # noqa: F821
|
|
@login_required
|
|
def tts():
|
|
req = request.json
|
|
text = req["text"]
|
|
|
|
tenants = TenantService.get_info_by(current_user.id)
|
|
if not tenants:
|
|
return get_data_error_result(message="Tenant not found!")
|
|
|
|
tts_id = tenants[0]["tts_id"]
|
|
if not tts_id:
|
|
return get_data_error_result(message="No default TTS model is set")
|
|
|
|
tts_mdl = LLMBundle(tenants[0]["tenant_id"], LLMType.TTS, tts_id)
|
|
|
|
def stream_audio():
|
|
try:
|
|
for txt in re.split(r"[,。/《》?;:!\n\r:;]+", text):
|
|
for chunk in tts_mdl.tts(txt):
|
|
yield chunk
|
|
except Exception as e:
|
|
yield ("data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e)}}, ensure_ascii=False)).encode("utf-8")
|
|
|
|
resp = Response(stream_audio(), mimetype="audio/mpeg")
|
|
resp.headers.add_header("Cache-Control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
|
|
return resp
|
|
|
|
|
|
@manager.route("/delete_msg", methods=["POST"]) # noqa: F821
|
|
@login_required
|
|
@validate_request("conversation_id", "message_id")
|
|
def delete_msg():
|
|
req = request.json
|
|
e, conv = ConversationService.get_by_id(req["conversation_id"])
|
|
if not e:
|
|
return get_data_error_result(message="Conversation not found!")
|
|
|
|
conv = conv.to_dict()
|
|
for i, msg in enumerate(conv["message"]):
|
|
if req["message_id"] != msg.get("id", ""):
|
|
continue
|
|
assert conv["message"][i + 1]["id"] == req["message_id"]
|
|
conv["message"].pop(i)
|
|
conv["message"].pop(i)
|
|
conv["reference"].pop(max(0, i // 2 - 1))
|
|
break
|
|
|
|
ConversationService.update_by_id(conv["id"], conv)
|
|
return get_json_result(data=conv)
|
|
|
|
|
|
@manager.route("/thumbup", methods=["POST"]) # noqa: F821
|
|
@login_required
|
|
@validate_request("conversation_id", "message_id")
|
|
def thumbup():
|
|
req = request.json
|
|
e, conv = ConversationService.get_by_id(req["conversation_id"])
|
|
if not e:
|
|
return get_data_error_result(message="Conversation not found!")
|
|
up_down = req.get("thumbup")
|
|
feedback = req.get("feedback", "")
|
|
conv = conv.to_dict()
|
|
for i, msg in enumerate(conv["message"]):
|
|
if req["message_id"] == msg.get("id", "") and msg.get("role", "") == "assistant":
|
|
if up_down:
|
|
msg["thumbup"] = True
|
|
if "feedback" in msg:
|
|
del msg["feedback"]
|
|
else:
|
|
msg["thumbup"] = False
|
|
if feedback:
|
|
msg["feedback"] = feedback
|
|
break
|
|
|
|
ConversationService.update_by_id(conv["id"], conv)
|
|
return get_json_result(data=conv)
|
|
|
|
|
|
@manager.route("/ask", methods=["POST"]) # noqa: F821
|
|
@login_required
|
|
@validate_request("question", "kb_ids")
|
|
def ask_about():
|
|
req = request.json
|
|
uid = current_user.id
|
|
|
|
search_id = req.get("search_id", "")
|
|
search_app = None
|
|
search_config = {}
|
|
if search_id:
|
|
search_app = SearchService.get_detail(search_id)
|
|
if search_app:
|
|
search_config = search_app.get("search_config", {})
|
|
|
|
def stream():
|
|
nonlocal req, uid
|
|
try:
|
|
for ans in ask(req["question"], req["kb_ids"], uid, search_config=search_config):
|
|
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
|
|
except Exception as e:
|
|
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
|
|
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
|
|
|
|
resp = Response(stream(), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
|
|
|
|
@manager.route("/mindmap", methods=["POST"]) # noqa: F821
|
|
@login_required
|
|
@validate_request("question", "kb_ids")
|
|
def mindmap():
|
|
req = request.json
|
|
|
|
search_id = req.get("search_id", "")
|
|
search_app = None
|
|
search_config = {}
|
|
if search_id:
|
|
search_app = SearchService.get_detail(search_id)
|
|
if search_app:
|
|
search_config = search_app.get("search_config", {})
|
|
|
|
kb_ids = req["kb_ids"]
|
|
if search_config.get("kb_ids", []):
|
|
kb_ids = search_config.get("kb_ids", [])
|
|
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
|
|
if not e:
|
|
return get_data_error_result(message="Knowledgebase not found!")
|
|
|
|
chat_id = ""
|
|
similarity_threshold = 0.3,
|
|
vector_similarity_weight = 0.3,
|
|
top = 1024,
|
|
doc_ids = []
|
|
rerank_id = ""
|
|
rerank_mdl = None
|
|
|
|
if search_config:
|
|
if search_config.get("chat_id", ""):
|
|
chat_id = search_config.get("chat_id", "")
|
|
if search_config.get("similarity_threshold", 0.2):
|
|
similarity_threshold = search_config.get("similarity_threshold", 0.2)
|
|
if search_config.get("vector_similarity_weight", 0.3):
|
|
vector_similarity_weight = search_config.get("vector_similarity_weight", 0.3)
|
|
if search_config.get("top_k", 1024):
|
|
top = search_config.get("top_k", 1024)
|
|
if search_config.get("doc_ids", []):
|
|
doc_ids = search_config.get("doc_ids", [])
|
|
if search_config.get("rerank_id", ""):
|
|
rerank_id = search_config.get("rerank_id", "")
|
|
|
|
tenant_id = kb.tenant_id
|
|
if search_app and search_app.get("tenant_id", ""):
|
|
tenant_id = search_app.get("tenant_id", "")
|
|
|
|
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id)
|
|
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_name=chat_id)
|
|
if rerank_id:
|
|
rerank_mdl = LLMBundle(tenant_id, LLMType.RERANK, rerank_id)
|
|
question = req["question"]
|
|
ranks = settings.retrievaler.retrieval(
|
|
question=question,
|
|
embd_mdl=embd_mdl,
|
|
tenant_ids=tenant_id,
|
|
kb_ids=kb_ids,
|
|
page=1,
|
|
page_size=12,
|
|
similarity_threshold=similarity_threshold,
|
|
vector_similarity_weight=vector_similarity_weight,
|
|
top=top,
|
|
doc_ids=doc_ids,
|
|
aggs=False,
|
|
rerank_mdl=rerank_mdl,
|
|
rank_feature=label_question(question, [kb]),
|
|
)
|
|
mindmap = MindMapExtractor(chat_mdl)
|
|
mind_map = trio.run(mindmap, [c["content_with_weight"] for c in ranks["chunks"]])
|
|
mind_map = mind_map.output
|
|
if "error" in mind_map:
|
|
return server_error_response(Exception(mind_map["error"]))
|
|
return get_json_result(data=mind_map)
|
|
|
|
|
|
@manager.route("/related_questions", methods=["POST"]) # noqa: F821
|
|
@login_required
|
|
@validate_request("question")
|
|
def related_questions():
|
|
req = request.json
|
|
|
|
search_id = req.get("search_id", "")
|
|
search_config = {}
|
|
if search_id:
|
|
if search_app := SearchService.get_detail(search_id):
|
|
search_config = search_app.get("search_config", {})
|
|
|
|
question = req["question"]
|
|
|
|
chat_id = search_config.get("chat_id", "")
|
|
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT, chat_id)
|
|
|
|
gen_conf = search_config.get("llm_setting", {"temperature": 0.9})
|
|
prompt = load_prompt("related_question")
|
|
ans = chat_mdl.chat(
|
|
prompt,
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": f"""
|
|
Keywords: {question}
|
|
Related search terms:
|
|
""",
|
|
}
|
|
],
|
|
gen_conf,
|
|
)
|
|
return get_json_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])
|