mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-10-30 17:29:40 +00:00 
			
		
		
		
	 23b448cf96
			
		
	
	
		23b448cf96
		
			
		
	
	
	
	
		
			
			### What problem does this PR solve? _Briefly describe what this PR aims to solve. Include background context that will help reviewers understand the purpose of the PR._ Issue link:#[[Link the issue here](https://github.com/infiniflow/ragflow/issues/226)] ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
		
			
				
	
	
		
			396 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			396 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # -*- coding: utf-8 -*-
 | ||
| import json
 | ||
| import re
 | ||
| from copy import deepcopy
 | ||
| 
 | ||
| from elasticsearch_dsl import Q, Search
 | ||
| from typing import List, Optional, Dict, Union
 | ||
| from dataclasses import dataclass
 | ||
| 
 | ||
| from rag.settings import es_logger
 | ||
| from rag.utils import rmSpace
 | ||
| from rag.nlp import huqie, query
 | ||
| import numpy as np
 | ||
| 
 | ||
| 
 | ||
| def index_name(uid): return f"ragflow_{uid}"
 | ||
| 
 | ||
| 
 | ||
| class Dealer:
 | ||
|     def __init__(self, es):
 | ||
|         self.qryr = query.EsQueryer(es)
 | ||
|         self.qryr.flds = [
 | ||
|             "title_tks^10",
 | ||
|             "title_sm_tks^5",
 | ||
|             "important_kwd^30",
 | ||
|             "important_tks^20",
 | ||
|             "content_ltks^2",
 | ||
|             "content_sm_ltks"]
 | ||
|         self.es = es
 | ||
| 
 | ||
|     @dataclass
 | ||
|     class SearchResult:
 | ||
|         total: int
 | ||
|         ids: List[str]
 | ||
|         query_vector: List[float] = None
 | ||
|         field: Optional[Dict] = None
 | ||
|         highlight: Optional[Dict] = None
 | ||
|         aggregation: Union[List, Dict, None] = None
 | ||
|         keywords: Optional[List[str]] = None
 | ||
|         group_docs: List[List] = None
 | ||
| 
 | ||
|     def _vector(self, txt, emb_mdl, sim=0.8, topk=10):
 | ||
|         qv, c = emb_mdl.encode_queries(txt)
 | ||
|         return {
 | ||
|             "field": "q_%d_vec" % len(qv),
 | ||
|             "k": topk,
 | ||
|             "similarity": sim,
 | ||
|             "num_candidates": topk * 2,
 | ||
|             "query_vector": list(qv)
 | ||
|         }
 | ||
| 
 | ||
|     def search(self, req, idxnm, emb_mdl=None):
 | ||
|         qst = req.get("question", "")
 | ||
|         bqry, keywords = self.qryr.question(qst)
 | ||
|         if req.get("kb_ids"):
 | ||
|             bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
 | ||
|         if req.get("doc_ids"):
 | ||
|             bqry.filter.append(Q("terms", doc_id=req["doc_ids"]))
 | ||
|         if "available_int" in req:
 | ||
|             if req["available_int"] == 0:
 | ||
|                 bqry.filter.append(Q("range", available_int={"lt": 1}))
 | ||
|             else:
 | ||
|                 bqry.filter.append(
 | ||
|                     Q("bool", must_not=Q("range", available_int={"lt": 1})))
 | ||
|         bqry.boost = 0.05
 | ||
| 
 | ||
|         s = Search()
 | ||
|         pg = int(req.get("page", 1)) - 1
 | ||
|         ps = int(req.get("size", 1000))
 | ||
|         topk = int(req.get("topk", 1024))
 | ||
|         src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id",
 | ||
|                                  "image_id", "doc_id", "q_512_vec", "q_768_vec", "position_int",
 | ||
|                                  "q_1024_vec", "q_1536_vec", "available_int", "content_with_weight"])
 | ||
| 
 | ||
|         s = s.query(bqry)[pg * ps:(pg + 1) * ps]
 | ||
|         s = s.highlight("content_ltks")
 | ||
|         s = s.highlight("title_ltks")
 | ||
|         if not qst:
 | ||
|             if not req.get("sort"):
 | ||
|                 s = s.sort(
 | ||
|                     {"create_time": {"order": "desc", "unmapped_type": "date"}},
 | ||
|                     {"create_timestamp_flt": {
 | ||
|                         "order": "desc", "unmapped_type": "float"}}
 | ||
|                 )
 | ||
|             else:
 | ||
|                 s = s.sort(
 | ||
|                     {"page_num_int": {"order": "asc", "unmapped_type": "float",
 | ||
|                                       "mode": "avg", "numeric_type": "double"}},
 | ||
|                     {"top_int": {"order": "asc", "unmapped_type": "float",
 | ||
|                                  "mode": "avg", "numeric_type": "double"}},
 | ||
|                     {"create_time": {"order": "desc", "unmapped_type": "date"}},
 | ||
|                     {"create_timestamp_flt": {
 | ||
|                         "order": "desc", "unmapped_type": "float"}}
 | ||
|                 )
 | ||
| 
 | ||
|         if qst:
 | ||
|             s = s.highlight_options(
 | ||
|                 fragment_size=120,
 | ||
|                 number_of_fragments=5,
 | ||
|                 boundary_scanner_locale="zh-CN",
 | ||
|                 boundary_scanner="SENTENCE",
 | ||
|                 boundary_chars=",./;:\\!(),。?:!……()——、"
 | ||
|             )
 | ||
|         s = s.to_dict()
 | ||
|         q_vec = []
 | ||
|         if req.get("vector"):
 | ||
|             assert emb_mdl, "No embedding model selected"
 | ||
|             s["knn"] = self._vector(
 | ||
|                 qst, emb_mdl, req.get(
 | ||
|                     "similarity", 0.1), topk)
 | ||
|             s["knn"]["filter"] = bqry.to_dict()
 | ||
|             if "highlight" in s:
 | ||
|                 del s["highlight"]
 | ||
|             q_vec = s["knn"]["query_vector"]
 | ||
|         es_logger.info("【Q】: {}".format(json.dumps(s)))
 | ||
|         res = self.es.search(deepcopy(s), idxnm=idxnm, timeout="600s", src=src)
 | ||
|         es_logger.info("TOTAL: {}".format(self.es.getTotal(res)))
 | ||
|         if self.es.getTotal(res) == 0 and "knn" in s:
 | ||
|             bqry, _ = self.qryr.question(qst, min_match="10%")
 | ||
|             if req.get("kb_ids"):
 | ||
|                 bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
 | ||
|             s["query"] = bqry.to_dict()
 | ||
|             s["knn"]["filter"] = bqry.to_dict()
 | ||
|             s["knn"]["similarity"] = 0.17
 | ||
|             res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
 | ||
|             es_logger.info("【Q】: {}".format(json.dumps(s)))
 | ||
| 
 | ||
|         kwds = set([])
 | ||
|         for k in keywords:
 | ||
|             kwds.add(k)
 | ||
|             for kk in huqie.qieqie(k).split(" "):
 | ||
|                 if len(kk) < 2:
 | ||
|                     continue
 | ||
|                 if kk in kwds:
 | ||
|                     continue
 | ||
|                 kwds.add(kk)
 | ||
| 
 | ||
|         aggs = self.getAggregation(res, "docnm_kwd")
 | ||
| 
 | ||
|         return self.SearchResult(
 | ||
|             total=self.es.getTotal(res),
 | ||
|             ids=self.es.getDocIds(res),
 | ||
|             query_vector=q_vec,
 | ||
|             aggregation=aggs,
 | ||
|             highlight=self.getHighlight(res),
 | ||
|             field=self.getFields(res, src),
 | ||
|             keywords=list(kwds)
 | ||
|         )
 | ||
| 
 | ||
|     def getAggregation(self, res, g):
 | ||
|         if not "aggregations" in res or "aggs_" + g not in res["aggregations"]:
 | ||
|             return
 | ||
|         bkts = res["aggregations"]["aggs_" + g]["buckets"]
 | ||
|         return [(b["key"], b["doc_count"]) for b in bkts]
 | ||
| 
 | ||
|     def getHighlight(self, res):
 | ||
|         def rmspace(line):
 | ||
|             eng = set(list("qwertyuioplkjhgfdsazxcvbnm"))
 | ||
|             r = []
 | ||
|             for t in line.split(" "):
 | ||
|                 if not t:
 | ||
|                     continue
 | ||
|                 if len(r) > 0 and len(
 | ||
|                         t) > 0 and r[-1][-1] in eng and t[0] in eng:
 | ||
|                     r.append(" ")
 | ||
|                 r.append(t)
 | ||
|             r = "".join(r)
 | ||
|             return r
 | ||
| 
 | ||
|         ans = {}
 | ||
|         for d in res["hits"]["hits"]:
 | ||
|             hlts = d.get("highlight")
 | ||
|             if not hlts:
 | ||
|                 continue
 | ||
|             ans[d["_id"]] = "".join([a for a in list(hlts.items())[0][1]])
 | ||
|         return ans
 | ||
| 
 | ||
|     def getFields(self, sres, flds):
 | ||
|         res = {}
 | ||
|         if not flds:
 | ||
|             return {}
 | ||
|         for d in self.es.getSource(sres):
 | ||
|             m = {n: d.get(n) for n in flds if d.get(n) is not None}
 | ||
|             for n, v in m.items():
 | ||
|                 if isinstance(v, type([])):
 | ||
|                     m[n] = "\t".join([str(vv) if not isinstance(
 | ||
|                         vv, list) else "\t".join([str(vvv) for vvv in vv]) for vv in v])
 | ||
|                     continue
 | ||
|                 if not isinstance(v, type("")):
 | ||
|                     m[n] = str(m[n])
 | ||
|                 if n.find("tks") > 0:
 | ||
|                     m[n] = rmSpace(m[n])
 | ||
| 
 | ||
|             if m:
 | ||
|                 res[d["id"]] = m
 | ||
|         return res
 | ||
| 
 | ||
|     @staticmethod
 | ||
|     def trans2floats(txt):
 | ||
|         return [float(t) for t in txt.split("\t")]
 | ||
| 
 | ||
|     def insert_citations(self, answer, chunks, chunk_v,
 | ||
|                          embd_mdl, tkweight=0.1, vtweight=0.9):
 | ||
|         assert len(chunks) == len(chunk_v)
 | ||
|         pieces = re.split(r"(```)", answer)
 | ||
|         if len(pieces) >= 3:
 | ||
|             i = 0
 | ||
|             pieces_ = []
 | ||
|             while i < len(pieces):
 | ||
|                 if pieces[i] == "```":
 | ||
|                     st = i
 | ||
|                     i += 1
 | ||
|                     while i < len(pieces) and pieces[i] != "```":
 | ||
|                         i += 1
 | ||
|                     if i < len(pieces):
 | ||
|                         i += 1
 | ||
|                     pieces_.append("".join(pieces[st: i]) + "\n")
 | ||
|                 else:
 | ||
|                     pieces_.extend(
 | ||
|                         re.split(
 | ||
|                             r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])",
 | ||
|                             pieces[i]))
 | ||
|                     i += 1
 | ||
|             pieces = pieces_
 | ||
|         else:
 | ||
|             pieces = re.split(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", answer)
 | ||
|         for i in range(1, len(pieces)):
 | ||
|             if re.match(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", pieces[i]):
 | ||
|                 pieces[i - 1] += pieces[i][0]
 | ||
|                 pieces[i] = pieces[i][1:]
 | ||
|         idx = []
 | ||
|         pieces_ = []
 | ||
|         for i, t in enumerate(pieces):
 | ||
|             if len(t) < 5:
 | ||
|                 continue
 | ||
|             idx.append(i)
 | ||
|             pieces_.append(t)
 | ||
|         es_logger.info("{} => {}".format(answer, pieces_))
 | ||
|         if not pieces_:
 | ||
|             return answer
 | ||
| 
 | ||
|         ans_v, _ = embd_mdl.encode(pieces_)
 | ||
|         assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
 | ||
|             len(ans_v[0]), len(chunk_v[0]))
 | ||
| 
 | ||
|         chunks_tks = [huqie.qie(self.qryr.rmWWW(ck)).split(" ")
 | ||
|                       for ck in chunks]
 | ||
|         cites = {}
 | ||
|         thr = 0.63
 | ||
|         while thr>0.3 and len(cites.keys()) == 0 and pieces_ and chunks_tks:
 | ||
|             for i, a in enumerate(pieces_):
 | ||
|                 sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i],
 | ||
|                                                                 chunk_v,
 | ||
|                                                                 huqie.qie(
 | ||
|                                                                     self.qryr.rmWWW(pieces_[i])).split(" "),
 | ||
|                                                                 chunks_tks,
 | ||
|                                                                 tkweight, vtweight)
 | ||
|                 mx = np.max(sim) * 0.99
 | ||
|                 es_logger.info("{} SIM: {}".format(pieces_[i], mx))
 | ||
|                 if mx < thr:
 | ||
|                     continue
 | ||
|                 cites[idx[i]] = list(
 | ||
|                     set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4]
 | ||
|             thr *= 0.8
 | ||
| 
 | ||
|         res = ""
 | ||
|         seted = set([])
 | ||
|         for i, p in enumerate(pieces):
 | ||
|             res += p
 | ||
|             if i not in idx:
 | ||
|                 continue
 | ||
|             if i not in cites:
 | ||
|                 continue
 | ||
|             for c in cites[i]:
 | ||
|                 assert int(c) < len(chunk_v)
 | ||
|             for c in cites[i]:
 | ||
|                 if c in seted:
 | ||
|                     continue
 | ||
|                 res += f" ##{c}$$"
 | ||
|                 seted.add(c)
 | ||
| 
 | ||
|         return res, seted
 | ||
| 
 | ||
|     def rerank(self, sres, query, tkweight=0.3,
 | ||
|                vtweight=0.7, cfield="content_ltks"):
 | ||
|         _, keywords = self.qryr.question(query)
 | ||
|         ins_embd = [
 | ||
|             Dealer.trans2floats(
 | ||
|                 sres.field[i].get("q_%d_vec" % len(sres.query_vector), "\t".join(["0"] * len(sres.query_vector)))) for i in sres.ids]
 | ||
|         if not ins_embd:
 | ||
|             return [], [], []
 | ||
|         ins_tw = [sres.field[i][cfield].split(" ")
 | ||
|                   for i in sres.ids]
 | ||
|         sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
 | ||
|                                                         ins_embd,
 | ||
|                                                         keywords,
 | ||
|                                                         ins_tw, tkweight, vtweight)
 | ||
|         return sim, tksim, vtsim
 | ||
| 
 | ||
|     def hybrid_similarity(self, ans_embd, ins_embd, ans, inst):
 | ||
|         return self.qryr.hybrid_similarity(ans_embd,
 | ||
|                                            ins_embd,
 | ||
|                                            huqie.qie(ans).split(" "),
 | ||
|                                            huqie.qie(inst).split(" "))
 | ||
| 
 | ||
|     def retrieval(self, question, embd_mdl, tenant_id, kb_ids, page, page_size, similarity_threshold=0.2,
 | ||
|                   vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True):
 | ||
|         ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
 | ||
|         if not question:
 | ||
|             return ranks
 | ||
|         req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": page_size,
 | ||
|                "question": question, "vector": True, "topk": top,
 | ||
|                "similarity": similarity_threshold}
 | ||
|         sres = self.search(req, index_name(tenant_id), embd_mdl)
 | ||
| 
 | ||
|         sim, tsim, vsim = self.rerank(
 | ||
|             sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
 | ||
|         idx = np.argsort(sim * -1)
 | ||
| 
 | ||
|         dim = len(sres.query_vector)
 | ||
|         start_idx = (page - 1) * page_size
 | ||
|         for i in idx:
 | ||
|             if sim[i] < similarity_threshold:
 | ||
|                 break
 | ||
|             ranks["total"] += 1
 | ||
|             start_idx -= 1
 | ||
|             if start_idx >= 0:
 | ||
|                 continue
 | ||
|             if len(ranks["chunks"]) >= page_size:
 | ||
|                 if aggs:
 | ||
|                     continue
 | ||
|                 break
 | ||
|             id = sres.ids[i]
 | ||
|             dnm = sres.field[id]["docnm_kwd"]
 | ||
|             did = sres.field[id]["doc_id"]
 | ||
|             d = {
 | ||
|                 "chunk_id": id,
 | ||
|                 "content_ltks": sres.field[id]["content_ltks"],
 | ||
|                 "content_with_weight": sres.field[id]["content_with_weight"],
 | ||
|                 "doc_id": sres.field[id]["doc_id"],
 | ||
|                 "docnm_kwd": dnm,
 | ||
|                 "kb_id": sres.field[id]["kb_id"],
 | ||
|                 "important_kwd": sres.field[id].get("important_kwd", []),
 | ||
|                 "img_id": sres.field[id].get("img_id", ""),
 | ||
|                 "similarity": sim[i],
 | ||
|                 "vector_similarity": vsim[i],
 | ||
|                 "term_similarity": tsim[i],
 | ||
|                 "vector": self.trans2floats(sres.field[id].get("q_%d_vec" % dim, "\t".join(["0"] * dim))),
 | ||
|                 "positions": sres.field[id].get("position_int", "").split("\t")
 | ||
|             }
 | ||
|             if len(d["positions"]) % 5 == 0:
 | ||
|                 poss = []
 | ||
|                 for i in range(0, len(d["positions"]), 5):
 | ||
|                     poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]),
 | ||
|                                  float(d["positions"][i + 3]), float(d["positions"][i + 4])])
 | ||
|                 d["positions"] = poss
 | ||
|             ranks["chunks"].append(d)
 | ||
|             if dnm not in ranks["doc_aggs"]:
 | ||
|                 ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
 | ||
|             ranks["doc_aggs"][dnm]["count"] += 1
 | ||
|         ranks["doc_aggs"] = [{"doc_name": k,
 | ||
|                               "doc_id": v["doc_id"],
 | ||
|                               "count": v["count"]} for k,
 | ||
|                              v in sorted(ranks["doc_aggs"].items(),
 | ||
|                                          key=lambda x:x[1]["count"] * -1)]
 | ||
| 
 | ||
|         return ranks
 | ||
| 
 | ||
|     def sql_retrieval(self, sql, fetch_size=128, format="json"):
 | ||
|         from api.settings import chat_logger
 | ||
|         sql = re.sub(r"[ ]+", " ", sql)
 | ||
|         sql = sql.replace("%", "")
 | ||
|         es_logger.info(f"Get es sql: {sql}")
 | ||
|         replaces = []
 | ||
|         for r in re.finditer(r" ([a-z_]+_l?tks)( like | ?= ?)'([^']+)'", sql):
 | ||
|             fld, v = r.group(1), r.group(3)
 | ||
|             match = " MATCH({}, '{}', 'operator=OR;minimum_should_match=30%') ".format(
 | ||
|                 fld, huqie.qieqie(huqie.qie(v)))
 | ||
|             replaces.append(
 | ||
|                 ("{}{}'{}'".format(
 | ||
|                     r.group(1),
 | ||
|                     r.group(2),
 | ||
|                     r.group(3)),
 | ||
|                     match))
 | ||
| 
 | ||
|         for p, r in replaces:
 | ||
|             sql = sql.replace(p, r, 1)
 | ||
|         chat_logger.info(f"To es: {sql}")
 | ||
| 
 | ||
|         try:
 | ||
|             tbl = self.es.sql(sql, fetch_size, format)
 | ||
|             return tbl
 | ||
|         except Exception as e:
 | ||
|             chat_logger.error(f"SQL failure: {sql} =>" + str(e))
 | ||
|             return {"error": str(e)}
 |