mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-07-04 07:26:22 +00:00

…ions ### What problem does this PR solve? This PR fixes an issue where the application was repeatedly reading the llm_factories.json file from disk in multiple places, which could lead to "Too many open files" errors under high load conditions. The fix centralizes the file reading operation in the settings.py module and stores the data in a global variable that can be accessed by other modules. ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue) - [ ] New Feature (non-breaking change which adds functionality) - [ ] Documentation Update - [ ] Refactoring - [x] Performance Improvement - [ ] Other (please describe):
181 lines
6.9 KiB
Python
181 lines
6.9 KiB
Python
#
|
||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
#
|
||
import logging
|
||
import base64
|
||
import json
|
||
import os
|
||
import time
|
||
import uuid
|
||
from copy import deepcopy
|
||
|
||
from api.db import LLMType, UserTenantRole
|
||
from api.db.db_models import init_database_tables as init_web_db, LLMFactories, LLM, TenantLLM
|
||
from api.db.services import UserService
|
||
from api.db.services.canvas_service import CanvasTemplateService
|
||
from api.db.services.document_service import DocumentService
|
||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||
from api.db.services.llm_service import LLMFactoriesService, LLMService, TenantLLMService, LLMBundle
|
||
from api.db.services.user_service import TenantService, UserTenantService
|
||
from api import settings
|
||
from api.utils.file_utils import get_project_base_directory
|
||
|
||
|
||
def encode_to_base64(input_string):
|
||
base64_encoded = base64.b64encode(input_string.encode('utf-8'))
|
||
return base64_encoded.decode('utf-8')
|
||
|
||
|
||
def init_superuser():
|
||
user_info = {
|
||
"id": uuid.uuid1().hex,
|
||
"password": encode_to_base64("admin"),
|
||
"nickname": "admin",
|
||
"is_superuser": True,
|
||
"email": "admin@ragflow.io",
|
||
"creator": "system",
|
||
"status": "1",
|
||
}
|
||
tenant = {
|
||
"id": user_info["id"],
|
||
"name": user_info["nickname"] + "‘s Kingdom",
|
||
"llm_id": settings.CHAT_MDL,
|
||
"embd_id": settings.EMBEDDING_MDL,
|
||
"asr_id": settings.ASR_MDL,
|
||
"parser_ids": settings.PARSERS,
|
||
"img2txt_id": settings.IMAGE2TEXT_MDL
|
||
}
|
||
usr_tenant = {
|
||
"tenant_id": user_info["id"],
|
||
"user_id": user_info["id"],
|
||
"invited_by": user_info["id"],
|
||
"role": UserTenantRole.OWNER
|
||
}
|
||
tenant_llm = []
|
||
for llm in LLMService.query(fid=settings.LLM_FACTORY):
|
||
tenant_llm.append(
|
||
{"tenant_id": user_info["id"], "llm_factory": settings.LLM_FACTORY, "llm_name": llm.llm_name,
|
||
"model_type": llm.model_type,
|
||
"api_key": settings.API_KEY, "api_base": settings.LLM_BASE_URL})
|
||
|
||
if not UserService.save(**user_info):
|
||
logging.error("can't init admin.")
|
||
return
|
||
TenantService.insert(**tenant)
|
||
UserTenantService.insert(**usr_tenant)
|
||
TenantLLMService.insert_many(tenant_llm)
|
||
logging.info(
|
||
"Super user initialized. email: admin@ragflow.io, password: admin. Changing the password after login is strongly recommended.")
|
||
|
||
chat_mdl = LLMBundle(tenant["id"], LLMType.CHAT, tenant["llm_id"])
|
||
msg = chat_mdl.chat(system="", history=[
|
||
{"role": "user", "content": "Hello!"}], gen_conf={})
|
||
if msg.find("ERROR: ") == 0:
|
||
logging.error(
|
||
"'{}' dosen't work. {}".format(
|
||
tenant["llm_id"],
|
||
msg))
|
||
embd_mdl = LLMBundle(tenant["id"], LLMType.EMBEDDING, tenant["embd_id"])
|
||
v, c = embd_mdl.encode(["Hello!"])
|
||
if c == 0:
|
||
logging.error(
|
||
"'{}' dosen't work!".format(
|
||
tenant["embd_id"]))
|
||
|
||
|
||
def init_llm_factory():
|
||
try:
|
||
LLMService.filter_delete([(LLM.fid == "MiniMax" or LLM.fid == "Minimax")])
|
||
LLMService.filter_delete([(LLM.fid == "cohere")])
|
||
LLMFactoriesService.filter_delete([LLMFactories.name == "cohere"])
|
||
except Exception:
|
||
pass
|
||
|
||
factory_llm_infos = settings.FACTORY_LLM_INFOS
|
||
for factory_llm_info in factory_llm_infos:
|
||
llm_infos = factory_llm_info.pop("llm")
|
||
try:
|
||
LLMFactoriesService.save(**factory_llm_info)
|
||
except Exception:
|
||
pass
|
||
LLMService.filter_delete([LLM.fid == factory_llm_info["name"]])
|
||
for llm_info in llm_infos:
|
||
llm_info["fid"] = factory_llm_info["name"]
|
||
try:
|
||
LLMService.save(**llm_info)
|
||
except Exception:
|
||
pass
|
||
|
||
LLMFactoriesService.filter_delete([LLMFactories.name == "Local"])
|
||
LLMService.filter_delete([LLM.fid == "Local"])
|
||
LLMService.filter_delete([LLM.llm_name == "qwen-vl-max"])
|
||
LLMService.filter_delete([LLM.fid == "Moonshot", LLM.llm_name == "flag-embedding"])
|
||
TenantLLMService.filter_delete([TenantLLM.llm_factory == "Moonshot", TenantLLM.llm_name == "flag-embedding"])
|
||
LLMFactoriesService.filter_delete([LLMFactoriesService.model.name == "QAnything"])
|
||
LLMService.filter_delete([LLMService.model.fid == "QAnything"])
|
||
TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "QAnything"], {"llm_factory": "Youdao"})
|
||
TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "cohere"], {"llm_factory": "Cohere"})
|
||
TenantService.filter_update([1 == 1], {
|
||
"parser_ids": "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,email:Email,tag:Tag"})
|
||
## insert openai two embedding models to the current openai user.
|
||
# print("Start to insert 2 OpenAI embedding models...")
|
||
tenant_ids = set([row["tenant_id"] for row in TenantLLMService.get_openai_models()])
|
||
for tid in tenant_ids:
|
||
for row in TenantLLMService.query(llm_factory="OpenAI", tenant_id=tid):
|
||
row = row.to_dict()
|
||
row["model_type"] = LLMType.EMBEDDING.value
|
||
row["llm_name"] = "text-embedding-3-small"
|
||
row["used_tokens"] = 0
|
||
try:
|
||
TenantLLMService.save(**row)
|
||
row = deepcopy(row)
|
||
row["llm_name"] = "text-embedding-3-large"
|
||
TenantLLMService.save(**row)
|
||
except Exception:
|
||
pass
|
||
break
|
||
for kb_id in KnowledgebaseService.get_all_ids():
|
||
KnowledgebaseService.update_by_id(kb_id, {"doc_num": DocumentService.get_kb_doc_count(kb_id)})
|
||
|
||
|
||
|
||
def add_graph_templates():
|
||
dir = os.path.join(get_project_base_directory(), "agent", "templates")
|
||
for fnm in os.listdir(dir):
|
||
try:
|
||
cnvs = json.load(open(os.path.join(dir, fnm), "r",encoding="utf-8"))
|
||
try:
|
||
CanvasTemplateService.save(**cnvs)
|
||
except Exception:
|
||
CanvasTemplateService.update_by_id(cnvs["id"], cnvs)
|
||
except Exception:
|
||
logging.exception("Add graph templates error: ")
|
||
|
||
|
||
def init_web_data():
|
||
start_time = time.time()
|
||
|
||
init_llm_factory()
|
||
# if not UserService.get_all().count():
|
||
# init_superuser()
|
||
|
||
add_graph_templates()
|
||
logging.info("init web data success:{}".format(time.time() - start_time))
|
||
|
||
|
||
if __name__ == '__main__':
|
||
init_web_db()
|
||
init_web_data()
|