mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-10-31 17:59:43 +00:00 
			
		
		
		
	 5decdde182
			
		
	
	
		5decdde182
		
			
		
	
	
	
	
		
			
			### What problem does this PR solve? #1853 add support for Google Cloud ### Type of change - [x] New Feature (non-breaking change which adds functionality) --------- Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
		
			
				
	
	
		
			1417 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1417 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #
 | |
| #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 | |
| #
 | |
| #  Licensed under the Apache License, Version 2.0 (the "License");
 | |
| #  you may not use this file except in compliance with the License.
 | |
| #  You may obtain a copy of the License at
 | |
| #
 | |
| #      http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| #  Unless required by applicable law or agreed to in writing, software
 | |
| #  distributed under the License is distributed on an "AS IS" BASIS,
 | |
| #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| #  See the License for the specific language governing permissions and
 | |
| #  limitations under the License.
 | |
| #
 | |
| from openai.lib.azure import AzureOpenAI
 | |
| from zhipuai import ZhipuAI
 | |
| from dashscope import Generation
 | |
| from abc import ABC
 | |
| from openai import OpenAI
 | |
| import openai
 | |
| from ollama import Client
 | |
| from volcengine.maas.v2 import MaasService
 | |
| from rag.nlp import is_english
 | |
| from rag.utils import num_tokens_from_string
 | |
| from groq import Groq
 | |
| import os 
 | |
| import json
 | |
| import requests
 | |
| import asyncio
 | |
| 
 | |
| class Base(ABC):
 | |
|     def __init__(self, key, model_name, base_url):
 | |
|         self.client = OpenAI(api_key=key, base_url=base_url)
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         try:
 | |
|             response = self.client.chat.completions.create(
 | |
|                 model=self.model_name,
 | |
|                 messages=history,
 | |
|                 **gen_conf)
 | |
|             ans = response.choices[0].message.content.strip()
 | |
|             if response.choices[0].finish_reason == "length":
 | |
|                 ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 | |
|                     [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | |
|             return ans, response.usage.total_tokens
 | |
|         except openai.APIError as e:
 | |
|             return "**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         ans = ""
 | |
|         total_tokens = 0
 | |
|         try:
 | |
|             response = self.client.chat.completions.create(
 | |
|                 model=self.model_name,
 | |
|                 messages=history,
 | |
|                 stream=True,
 | |
|                 **gen_conf)
 | |
|             for resp in response:
 | |
|                 if not resp.choices:continue
 | |
|                 if not resp.choices[0].delta.content:
 | |
|                     resp.choices[0].delta.content = ""  
 | |
|                 ans += resp.choices[0].delta.content
 | |
|                 total_tokens = (
 | |
|                     (
 | |
|                         total_tokens
 | |
|                         + num_tokens_from_string(resp.choices[0].delta.content)
 | |
|                     )
 | |
|                     if not hasattr(resp, "usage") or not resp.usage
 | |
|                     else resp.usage.get("total_tokens",total_tokens)
 | |
|                 )
 | |
|                 if resp.choices[0].finish_reason == "length":
 | |
|                     ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 | |
|                         [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | |
|                 yield ans
 | |
| 
 | |
|         except openai.APIError as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield total_tokens
 | |
| 
 | |
| 
 | |
| class GptTurbo(Base):
 | |
|     def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"):
 | |
|         if not base_url: base_url="https://api.openai.com/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class MoonshotChat(Base):
 | |
|     def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"):
 | |
|         if not base_url: base_url="https://api.moonshot.cn/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class XinferenceChat(Base):
 | |
|     def __init__(self, key=None, model_name="", base_url=""):
 | |
|         if not base_url:
 | |
|             raise ValueError("Local llm url cannot be None")
 | |
|         if base_url.split("/")[-1] != "v1":
 | |
|             base_url = os.path.join(base_url, "v1")
 | |
|         key = "xxx"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class DeepSeekChat(Base):
 | |
|     def __init__(self, key, model_name="deepseek-chat", base_url="https://api.deepseek.com/v1"):
 | |
|         if not base_url: base_url="https://api.deepseek.com/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class AzureChat(Base):
 | |
|     def __init__(self, key, model_name, **kwargs):
 | |
|         self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")
 | |
|         self.model_name = model_name
 | |
| 
 | |
| 
 | |
| class BaiChuanChat(Base):
 | |
|     def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.baichuan-ai.com/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
|     @staticmethod
 | |
|     def _format_params(params):
 | |
|         return {
 | |
|             "temperature": params.get("temperature", 0.3),
 | |
|             "max_tokens": params.get("max_tokens", 2048),
 | |
|             "top_p": params.get("top_p", 0.85),
 | |
|         }
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         try:
 | |
|             response = self.client.chat.completions.create(
 | |
|                 model=self.model_name,
 | |
|                 messages=history,
 | |
|                 extra_body={
 | |
|                     "tools": [{
 | |
|                         "type": "web_search",
 | |
|                         "web_search": {
 | |
|                             "enable": True,
 | |
|                             "search_mode": "performance_first"
 | |
|                         }
 | |
|                     }]
 | |
|                 },
 | |
|                 **self._format_params(gen_conf))
 | |
|             ans = response.choices[0].message.content.strip()
 | |
|             if response.choices[0].finish_reason == "length":
 | |
|                 ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 | |
|                     [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | |
|             return ans, response.usage.total_tokens
 | |
|         except openai.APIError as e:
 | |
|             return "**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         ans = ""
 | |
|         total_tokens = 0
 | |
|         try:
 | |
|             response = self.client.chat.completions.create(
 | |
|                 model=self.model_name,
 | |
|                 messages=history,
 | |
|                 extra_body={
 | |
|                     "tools": [{
 | |
|                         "type": "web_search",
 | |
|                         "web_search": {
 | |
|                             "enable": True,
 | |
|                             "search_mode": "performance_first"
 | |
|                         }
 | |
|                     }]
 | |
|                 },
 | |
|                 stream=True,
 | |
|                 **self._format_params(gen_conf))
 | |
|             for resp in response:
 | |
|                 if not resp.choices:continue
 | |
|                 if not resp.choices[0].delta.content:
 | |
|                     resp.choices[0].delta.content = ""  
 | |
|                 ans += resp.choices[0].delta.content
 | |
|                 total_tokens = (
 | |
|                     (
 | |
|                         total_tokens
 | |
|                         + num_tokens_from_string(resp.choices[0].delta.content)
 | |
|                     )
 | |
|                     if not hasattr(resp, "usage")
 | |
|                     else resp.usage["total_tokens"]
 | |
|                 )
 | |
|                 if resp.choices[0].finish_reason == "length":
 | |
|                     ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 | |
|                         [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | |
|                 yield ans
 | |
| 
 | |
|         except Exception as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield total_tokens
 | |
| 
 | |
| 
 | |
| class QWenChat(Base):
 | |
|     def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs):
 | |
|         import dashscope
 | |
|         dashscope.api_key = key
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         from http import HTTPStatus
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         response = Generation.call(
 | |
|             self.model_name,
 | |
|             messages=history,
 | |
|             result_format='message',
 | |
|             **gen_conf
 | |
|         )
 | |
|         ans = ""
 | |
|         tk_count = 0
 | |
|         if response.status_code == HTTPStatus.OK:
 | |
|             ans += response.output.choices[0]['message']['content']
 | |
|             tk_count += response.usage.total_tokens
 | |
|             if response.output.choices[0].get("finish_reason", "") == "length":
 | |
|                 ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 | |
|                     [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | |
|             return ans, tk_count
 | |
| 
 | |
|         return "**ERROR**: " + response.message, tk_count
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         from http import HTTPStatus
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         ans = ""
 | |
|         tk_count = 0
 | |
|         try:
 | |
|             response = Generation.call(
 | |
|                 self.model_name,
 | |
|                 messages=history,
 | |
|                 result_format='message',
 | |
|                 stream=True,
 | |
|                 **gen_conf
 | |
|             )
 | |
|             for resp in response:
 | |
|                 if resp.status_code == HTTPStatus.OK:
 | |
|                     ans = resp.output.choices[0]['message']['content']
 | |
|                     tk_count = resp.usage.total_tokens
 | |
|                     if resp.output.choices[0].get("finish_reason", "") == "length":
 | |
|                         ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 | |
|                             [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | |
|                     yield ans
 | |
|                 else:
 | |
|                     yield ans + "\n**ERROR**: " + resp.message if str(resp.message).find("Access")<0 else "Out of credit. Please set the API key in **settings > Model providers.**"
 | |
|         except Exception as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield tk_count
 | |
| 
 | |
| 
 | |
| class ZhipuChat(Base):
 | |
|     def __init__(self, key, model_name="glm-3-turbo", **kwargs):
 | |
|         self.client = ZhipuAI(api_key=key)
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         try:
 | |
|             if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"]
 | |
|             if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"]
 | |
|             response = self.client.chat.completions.create(
 | |
|                 model=self.model_name,
 | |
|                 messages=history,
 | |
|                 **gen_conf
 | |
|             )
 | |
|             ans = response.choices[0].message.content.strip()
 | |
|             if response.choices[0].finish_reason == "length":
 | |
|                 ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 | |
|                     [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | |
|             return ans, response.usage.total_tokens
 | |
|         except Exception as e:
 | |
|             return "**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"]
 | |
|         if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"]
 | |
|         ans = ""
 | |
|         tk_count = 0
 | |
|         try:
 | |
|             response = self.client.chat.completions.create(
 | |
|                 model=self.model_name,
 | |
|                 messages=history,
 | |
|                 stream=True,
 | |
|                 **gen_conf
 | |
|             )
 | |
|             for resp in response:
 | |
|                 if not resp.choices[0].delta.content:continue
 | |
|                 delta = resp.choices[0].delta.content
 | |
|                 ans += delta
 | |
|                 if resp.choices[0].finish_reason == "length":
 | |
|                     ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 | |
|                         [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | |
|                     tk_count = resp.usage.total_tokens
 | |
|                 if resp.choices[0].finish_reason == "stop": tk_count = resp.usage.total_tokens
 | |
|                 yield ans
 | |
|         except Exception as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield tk_count
 | |
| 
 | |
| 
 | |
| class OllamaChat(Base):
 | |
|     def __init__(self, key, model_name, **kwargs):
 | |
|         self.client = Client(host=kwargs["base_url"])
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         try:
 | |
|             options = {}
 | |
|             if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
 | |
|             if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
 | |
|             if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"]
 | |
|             if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
 | |
|             if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
 | |
|             response = self.client.chat(
 | |
|                 model=self.model_name,
 | |
|                 messages=history,
 | |
|                 options=options,
 | |
|                 keep_alive=-1
 | |
|             )
 | |
|             ans = response["message"]["content"].strip()
 | |
|             return ans, response["eval_count"] + response.get("prompt_eval_count", 0)
 | |
|         except Exception as e:
 | |
|             return "**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         options = {}
 | |
|         if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
 | |
|         if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
 | |
|         if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"]
 | |
|         if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
 | |
|         if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
 | |
|         ans = ""
 | |
|         try:
 | |
|             response = self.client.chat(
 | |
|                 model=self.model_name,
 | |
|                 messages=history,
 | |
|                 stream=True,
 | |
|                 options=options,
 | |
|                 keep_alive=-1
 | |
|             )
 | |
|             for resp in response:
 | |
|                 if resp["done"]:
 | |
|                     yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
 | |
|                 ans += resp["message"]["content"]
 | |
|                 yield ans
 | |
|         except Exception as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
|         yield 0
 | |
| 
 | |
| 
 | |
| class LocalAIChat(Base):
 | |
|     def __init__(self, key, model_name, base_url):
 | |
|         if not base_url:
 | |
|             raise ValueError("Local llm url cannot be None")
 | |
|         if base_url.split("/")[-1] != "v1":
 | |
|             base_url = os.path.join(base_url, "v1")
 | |
|         self.client = OpenAI(api_key="empty", base_url=base_url)
 | |
|         self.model_name = model_name.split("___")[0]
 | |
| 
 | |
| 
 | |
| class LocalLLM(Base):
 | |
|     class RPCProxy:
 | |
|         def __init__(self, host, port):
 | |
|             self.host = host
 | |
|             self.port = int(port)
 | |
|             self.__conn()
 | |
| 
 | |
|         def __conn(self):
 | |
|             from multiprocessing.connection import Client
 | |
| 
 | |
|             self._connection = Client(
 | |
|                 (self.host, self.port), authkey=b"infiniflow-token4kevinhu"
 | |
|             )
 | |
| 
 | |
|         def __getattr__(self, name):
 | |
|             import pickle
 | |
| 
 | |
|             def do_rpc(*args, **kwargs):
 | |
|                 for _ in range(3):
 | |
|                     try:
 | |
|                         self._connection.send(pickle.dumps((name, args, kwargs)))
 | |
|                         return pickle.loads(self._connection.recv())
 | |
|                     except Exception as e:
 | |
|                         self.__conn()
 | |
|                 raise Exception("RPC connection lost!")
 | |
| 
 | |
|             return do_rpc
 | |
| 
 | |
|     def __init__(self, key, model_name):
 | |
|         from jina import Client
 | |
| 
 | |
|         self.client = Client(port=12345, protocol="grpc", asyncio=True)
 | |
| 
 | |
|     def _prepare_prompt(self, system, history, gen_conf):
 | |
|         from rag.svr.jina_server import Prompt,Generation
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         if "max_tokens" in gen_conf:
 | |
|             gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens")
 | |
|         return Prompt(message=history, gen_conf=gen_conf)
 | |
| 
 | |
|     def _stream_response(self, endpoint, prompt):
 | |
|         from rag.svr.jina_server import Prompt,Generation
 | |
|         answer = ""
 | |
|         try:
 | |
|             res = self.client.stream_doc(
 | |
|                 on=endpoint, inputs=prompt, return_type=Generation
 | |
|             )
 | |
|             loop = asyncio.get_event_loop()
 | |
|             try:
 | |
|                 while True:
 | |
|                     answer = loop.run_until_complete(res.__anext__()).text
 | |
|                     yield answer
 | |
|             except StopAsyncIteration:
 | |
|                 pass
 | |
|         except Exception as e:
 | |
|             yield answer + "\n**ERROR**: " + str(e)
 | |
|         yield num_tokens_from_string(answer)
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         prompt = self._prepare_prompt(system, history, gen_conf)
 | |
|         chat_gen = self._stream_response("/chat", prompt)
 | |
|         ans = next(chat_gen)
 | |
|         total_tokens = next(chat_gen)
 | |
|         return ans, total_tokens
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         prompt = self._prepare_prompt(system, history, gen_conf)
 | |
|         return self._stream_response("/stream", prompt)
 | |
| 
 | |
| 
 | |
| class VolcEngineChat(Base):
 | |
|     def __init__(self, key, model_name, base_url='https://ark.cn-beijing.volces.com/api/v3'):
 | |
|         """
 | |
|         Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special,
 | |
|         Assemble ark_api_key, ep_id into api_key, store it as a dictionary type, and parse it for use
 | |
|         model_name is for display only
 | |
|         """
 | |
|         base_url = base_url if base_url else 'https://ark.cn-beijing.volces.com/api/v3'
 | |
|         ark_api_key = json.loads(key).get('ark_api_key', '')
 | |
|         model_name = json.loads(key).get('ep_id', '')
 | |
|         super().__init__(ark_api_key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class MiniMaxChat(Base):
 | |
|     def __init__(
 | |
|         self,
 | |
|         key,
 | |
|         model_name,
 | |
|         base_url="https://api.minimax.chat/v1/text/chatcompletion_v2",
 | |
|     ):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.minimax.chat/v1/text/chatcompletion_v2"
 | |
|         self.base_url = base_url
 | |
|         self.model_name = model_name
 | |
|         self.api_key = key
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         for k in list(gen_conf.keys()):
 | |
|             if k not in ["temperature", "top_p", "max_tokens"]:
 | |
|                 del gen_conf[k]
 | |
|         headers = {
 | |
|             "Authorization": f"Bearer {self.api_key}",
 | |
|             "Content-Type": "application/json",
 | |
|         }
 | |
|         payload = json.dumps(
 | |
|             {"model": self.model_name, "messages": history, **gen_conf}
 | |
|         )
 | |
|         try:
 | |
|             response = requests.request(
 | |
|                 "POST", url=self.base_url, headers=headers, data=payload
 | |
|             )
 | |
|             response = response.json()
 | |
|             ans = response["choices"][0]["message"]["content"].strip()
 | |
|             if response["choices"][0]["finish_reason"] == "length":
 | |
|                 ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 | |
|                     [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | |
|             return ans, response["usage"]["total_tokens"]
 | |
|         except Exception as e:
 | |
|             return "**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         ans = ""
 | |
|         total_tokens = 0
 | |
|         try:
 | |
|             headers = {
 | |
|                 "Authorization": f"Bearer {self.api_key}",
 | |
|                 "Content-Type": "application/json",
 | |
|             }
 | |
|             payload = json.dumps(
 | |
|                 {
 | |
|                     "model": self.model_name,
 | |
|                     "messages": history,
 | |
|                     "stream": True,
 | |
|                     **gen_conf,
 | |
|                 }
 | |
|             )
 | |
|             response = requests.request(
 | |
|                 "POST",
 | |
|                 url=self.base_url,
 | |
|                 headers=headers,
 | |
|                 data=payload,
 | |
|             )
 | |
|             for resp in response.text.split("\n\n")[:-1]:
 | |
|                 resp = json.loads(resp[6:])
 | |
|                 text = ""
 | |
|                 if "choices" in resp and "delta" in resp["choices"][0]:
 | |
|                     text = resp["choices"][0]["delta"]["content"]
 | |
|                 ans += text
 | |
|                 total_tokens = (
 | |
|                     total_tokens + num_tokens_from_string(text)
 | |
|                     if "usage" not in resp
 | |
|                     else resp["usage"]["total_tokens"]
 | |
|                 )
 | |
|                 yield ans
 | |
| 
 | |
|         except Exception as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield total_tokens
 | |
| 
 | |
| 
 | |
| class MistralChat(Base):
 | |
| 
 | |
|     def __init__(self, key, model_name, base_url=None):
 | |
|         from mistralai.client import MistralClient
 | |
|         self.client = MistralClient(api_key=key)
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         for k in list(gen_conf.keys()):
 | |
|             if k not in ["temperature", "top_p", "max_tokens"]:
 | |
|                 del gen_conf[k]
 | |
|         try:
 | |
|             response = self.client.chat(
 | |
|                 model=self.model_name,
 | |
|                 messages=history,
 | |
|                 **gen_conf)
 | |
|             ans = response.choices[0].message.content
 | |
|             if response.choices[0].finish_reason == "length":
 | |
|                 ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 | |
|                     [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | |
|             return ans, response.usage.total_tokens
 | |
|         except openai.APIError as e:
 | |
|             return "**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         for k in list(gen_conf.keys()):
 | |
|             if k not in ["temperature", "top_p", "max_tokens"]:
 | |
|                 del gen_conf[k]
 | |
|         ans = ""
 | |
|         total_tokens = 0
 | |
|         try:
 | |
|             response = self.client.chat_stream(
 | |
|                 model=self.model_name,
 | |
|                 messages=history,
 | |
|                 **gen_conf)
 | |
|             for resp in response:
 | |
|                 if not resp.choices or not resp.choices[0].delta.content:continue
 | |
|                 ans += resp.choices[0].delta.content
 | |
|                 total_tokens += 1
 | |
|                 if resp.choices[0].finish_reason == "length":
 | |
|                     ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 | |
|                         [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | |
|                 yield ans
 | |
| 
 | |
|         except openai.APIError as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield total_tokens
 | |
| 
 | |
| 
 | |
| class BedrockChat(Base):
 | |
| 
 | |
|     def __init__(self, key, model_name, **kwargs):
 | |
|         import boto3
 | |
|         self.bedrock_ak = json.loads(key).get('bedrock_ak', '')
 | |
|         self.bedrock_sk = json.loads(key).get('bedrock_sk', '')
 | |
|         self.bedrock_region = json.loads(key).get('bedrock_region', '')
 | |
|         self.model_name = model_name
 | |
|         self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
 | |
|                                    aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         from botocore.exceptions import ClientError
 | |
|         for k in list(gen_conf.keys()):
 | |
|             if k not in ["temperature", "top_p", "max_tokens"]:
 | |
|                 del gen_conf[k]
 | |
|         if "max_tokens" in gen_conf:
 | |
|             gen_conf["maxTokens"] = gen_conf["max_tokens"]
 | |
|             _ = gen_conf.pop("max_tokens")
 | |
|         if "top_p" in gen_conf:
 | |
|             gen_conf["topP"] = gen_conf["top_p"]
 | |
|             _ = gen_conf.pop("top_p")
 | |
|         for item in history:
 | |
|             if not isinstance(item["content"],list) and not isinstance(item["content"],tuple):
 | |
|                 item["content"] = [{"text":item["content"]}]
 | |
|             
 | |
| 
 | |
|         try:
 | |
|             # Send the message to the model, using a basic inference configuration.
 | |
|             response = self.client.converse(
 | |
|                 modelId=self.model_name,
 | |
|                 messages=history,
 | |
|                 inferenceConfig=gen_conf,
 | |
|                 system=[{"text": system}] if system else None,
 | |
|             )
 | |
|             
 | |
|             # Extract and print the response text.
 | |
|             ans = response["output"]["message"]["content"][0]["text"]
 | |
|             return ans, num_tokens_from_string(ans)
 | |
| 
 | |
|         except (ClientError, Exception) as e:
 | |
|             return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         from botocore.exceptions import ClientError
 | |
|         for k in list(gen_conf.keys()):
 | |
|             if k not in ["temperature", "top_p", "max_tokens"]:
 | |
|                 del gen_conf[k]
 | |
|         if "max_tokens" in gen_conf:
 | |
|             gen_conf["maxTokens"] = gen_conf["max_tokens"]
 | |
|             _ = gen_conf.pop("max_tokens")
 | |
|         if "top_p" in gen_conf:
 | |
|             gen_conf["topP"] = gen_conf["top_p"]
 | |
|             _ = gen_conf.pop("top_p")
 | |
|         for item in history:
 | |
|             if not isinstance(item["content"],list) and not isinstance(item["content"],tuple):
 | |
|                 item["content"] = [{"text":item["content"]}]
 | |
|                 
 | |
|         if self.model_name.split('.')[0] == 'ai21':
 | |
|             try:
 | |
|                 response = self.client.converse(
 | |
|                     modelId=self.model_name,
 | |
|                     messages=history,
 | |
|                     inferenceConfig=gen_conf,
 | |
|                     system=[{"text": system}] if system else None,
 | |
|                 )
 | |
|                 ans = response["output"]["message"]["content"][0]["text"]
 | |
|                 return ans, num_tokens_from_string(ans)
 | |
| 
 | |
|             except (ClientError, Exception) as e:
 | |
|                 return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
 | |
| 
 | |
|         ans = ""
 | |
|         try:
 | |
|             # Send the message to the model, using a basic inference configuration.
 | |
|             streaming_response = self.client.converse_stream(
 | |
|                 modelId=self.model_name,
 | |
|                 messages=history,
 | |
|                 inferenceConfig=gen_conf
 | |
|             )
 | |
| 
 | |
|             # Extract and print the streamed response text in real-time.
 | |
|             for resp in streaming_response["stream"]:
 | |
|                 if "contentBlockDelta" in resp:
 | |
|                     ans += resp["contentBlockDelta"]["delta"]["text"]
 | |
|                     yield ans
 | |
|             
 | |
|         except (ClientError, Exception) as e:
 | |
|             yield ans + f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}"
 | |
| 
 | |
|         yield num_tokens_from_string(ans)
 | |
| 
 | |
| class GeminiChat(Base):
 | |
| 
 | |
|     def __init__(self, key, model_name,base_url=None):
 | |
|         from google.generativeai import client,GenerativeModel 
 | |
|         
 | |
|         client.configure(api_key=key)
 | |
|         _client = client.get_default_generative_client()
 | |
|         self.model_name = 'models/' + model_name
 | |
|         self.model = GenerativeModel(model_name=self.model_name)
 | |
|         self.model._client = _client
 | |
|         
 | |
|         
 | |
|     def chat(self,system,history,gen_conf):
 | |
|         from google.generativeai.types import content_types
 | |
|         
 | |
|         if system:
 | |
|             self.model._system_instruction = content_types.to_content(system)
 | |
|             
 | |
|         if 'max_tokens' in gen_conf:
 | |
|             gen_conf['max_output_tokens'] = gen_conf['max_tokens']
 | |
|         for k in list(gen_conf.keys()):
 | |
|             if k not in ["temperature", "top_p", "max_output_tokens"]:
 | |
|                 del gen_conf[k]
 | |
|         for item in history:
 | |
|             if 'role' in item and item['role'] == 'assistant':
 | |
|                 item['role'] = 'model'
 | |
|             if  'content' in item :
 | |
|                 item['parts'] = item.pop('content')
 | |
|         
 | |
|         try:
 | |
|             response = self.model.generate_content(
 | |
|                 history,
 | |
|                 generation_config=gen_conf)
 | |
|             ans = response.text
 | |
|             return ans, response.usage_metadata.total_token_count
 | |
|         except Exception as e:
 | |
|             return "**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         from google.generativeai.types import content_types
 | |
|         
 | |
|         if system:
 | |
|             self.model._system_instruction = content_types.to_content(system)
 | |
|         if 'max_tokens' in gen_conf:
 | |
|             gen_conf['max_output_tokens'] = gen_conf['max_tokens']
 | |
|         for k in list(gen_conf.keys()):
 | |
|             if k not in ["temperature", "top_p", "max_output_tokens"]:
 | |
|                 del gen_conf[k]
 | |
|         for item in history:
 | |
|             if 'role' in item and item['role'] == 'assistant':
 | |
|                 item['role'] = 'model'
 | |
|             if  'content' in item :
 | |
|                 item['parts'] = item.pop('content')
 | |
|         ans = ""
 | |
|         try:
 | |
|             response = self.model.generate_content(
 | |
|                 history,
 | |
|                 generation_config=gen_conf,stream=True)
 | |
|             for resp in response:
 | |
|                 ans += resp.text
 | |
|                 yield ans
 | |
| 
 | |
|         except Exception as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield  response._chunks[-1].usage_metadata.total_token_count
 | |
| 
 | |
| 
 | |
| class GroqChat:
 | |
|     def __init__(self, key, model_name,base_url=''):
 | |
|         self.client = Groq(api_key=key)
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         for k in list(gen_conf.keys()):
 | |
|             if k not in ["temperature", "top_p", "max_tokens"]:
 | |
|                 del gen_conf[k]
 | |
|         ans = ""
 | |
|         try:
 | |
|             response = self.client.chat.completions.create(
 | |
|                 model=self.model_name,
 | |
|                 messages=history,
 | |
|                 **gen_conf
 | |
|             )
 | |
|             ans = response.choices[0].message.content
 | |
|             if response.choices[0].finish_reason == "length":
 | |
|                 ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 | |
|                     [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | |
|             return ans, response.usage.total_tokens
 | |
|         except Exception as e:
 | |
|             return ans + "\n**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         for k in list(gen_conf.keys()):
 | |
|             if k not in ["temperature", "top_p", "max_tokens"]:
 | |
|                 del gen_conf[k]
 | |
|         ans = ""
 | |
|         total_tokens = 0
 | |
|         try:
 | |
|             response = self.client.chat.completions.create(
 | |
|                 model=self.model_name,
 | |
|                 messages=history,
 | |
|                 stream=True,
 | |
|                 **gen_conf
 | |
|             )
 | |
|             for resp in response:
 | |
|                 if not resp.choices or not resp.choices[0].delta.content:
 | |
|                     continue
 | |
|                 ans += resp.choices[0].delta.content
 | |
|                 total_tokens += 1
 | |
|                 if resp.choices[0].finish_reason == "length":
 | |
|                     ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 | |
|                         [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | |
|                 yield ans
 | |
| 
 | |
|         except Exception as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield total_tokens
 | |
| 
 | |
| 
 | |
| ## openrouter
 | |
| class OpenRouterChat(Base):
 | |
|     def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://openrouter.ai/api/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class StepFunChat(Base):
 | |
|     def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.stepfun.com/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class NvidiaChat(Base):
 | |
|     def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://integrate.api.nvidia.com/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class LmStudioChat(Base):
 | |
|     def __init__(self, key, model_name, base_url):
 | |
|         if not base_url:
 | |
|             raise ValueError("Local llm url cannot be None")
 | |
|         if base_url.split("/")[-1] != "v1":
 | |
|             base_url = os.path.join(base_url, "v1")
 | |
|         self.client = OpenAI(api_key="lm-studio", base_url=base_url)
 | |
|         self.model_name = model_name
 | |
| 
 | |
| 
 | |
| class OpenAI_APIChat(Base):
 | |
|     def __init__(self, key, model_name, base_url):
 | |
|         if not base_url:
 | |
|             raise ValueError("url cannot be None")
 | |
|         if base_url.split("/")[-1] != "v1":
 | |
|             base_url = os.path.join(base_url, "v1")
 | |
|         model_name = model_name.split("___")[0]
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class CoHereChat(Base):
 | |
|     def __init__(self, key, model_name, base_url=""):
 | |
|         from cohere import Client
 | |
| 
 | |
|         self.client = Client(api_key=key)
 | |
|         self.model_name = model_name
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         if "top_p" in gen_conf:
 | |
|             gen_conf["p"] = gen_conf.pop("top_p")
 | |
|         if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
 | |
|             gen_conf.pop("presence_penalty")
 | |
|         for item in history:
 | |
|             if "role" in item and item["role"] == "user":
 | |
|                 item["role"] = "USER"
 | |
|             if "role" in item and item["role"] == "assistant":
 | |
|                 item["role"] = "CHATBOT"
 | |
|             if "content" in item:
 | |
|                 item["message"] = item.pop("content")
 | |
|         mes = history.pop()["message"]
 | |
|         ans = ""
 | |
|         try:
 | |
|             response = self.client.chat(
 | |
|                 model=self.model_name, chat_history=history, message=mes, **gen_conf
 | |
|             )
 | |
|             ans = response.text
 | |
|             if response.finish_reason == "MAX_TOKENS":
 | |
|                 ans += (
 | |
|                     "...\nFor the content length reason, it stopped, continue?"
 | |
|                     if is_english([ans])
 | |
|                     else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | |
|                 )
 | |
|             return (
 | |
|                 ans,
 | |
|                 response.meta.tokens.input_tokens + response.meta.tokens.output_tokens,
 | |
|             )
 | |
|         except Exception as e:
 | |
|             return ans + "\n**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             history.insert(0, {"role": "system", "content": system})
 | |
|         if "top_p" in gen_conf:
 | |
|             gen_conf["p"] = gen_conf.pop("top_p")
 | |
|         if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
 | |
|             gen_conf.pop("presence_penalty")
 | |
|         for item in history:
 | |
|             if "role" in item and item["role"] == "user":
 | |
|                 item["role"] = "USER"
 | |
|             if "role" in item and item["role"] == "assistant":
 | |
|                 item["role"] = "CHATBOT"
 | |
|             if "content" in item:
 | |
|                 item["message"] = item.pop("content")
 | |
|         mes = history.pop()["message"]
 | |
|         ans = ""
 | |
|         total_tokens = 0
 | |
|         try:
 | |
|             response = self.client.chat_stream(
 | |
|                 model=self.model_name, chat_history=history, message=mes, **gen_conf
 | |
|             )
 | |
|             for resp in response:
 | |
|                 if resp.event_type == "text-generation":
 | |
|                     ans += resp.text
 | |
|                     total_tokens += num_tokens_from_string(resp.text)
 | |
|                 elif resp.event_type == "stream-end":
 | |
|                     if resp.finish_reason == "MAX_TOKENS":
 | |
|                         ans += (
 | |
|                             "...\nFor the content length reason, it stopped, continue?"
 | |
|                             if is_english([ans])
 | |
|                             else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | |
|                         )
 | |
|                 yield ans
 | |
| 
 | |
|         except Exception as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield total_tokens
 | |
| 
 | |
| 
 | |
| class LeptonAIChat(Base):
 | |
|     def __init__(self, key, model_name, base_url=None):
 | |
|         if not base_url:
 | |
|             base_url = os.path.join("https://"+model_name+".lepton.run","api","v1")
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class TogetherAIChat(Base):
 | |
|     def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.together.xyz/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class PerfXCloudChat(Base):
 | |
|     def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://cloud.perfxlab.cn/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class UpstageChat(Base):
 | |
|     def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.upstage.ai/v1/solar"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class NovitaAIChat(Base):
 | |
|     def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai"):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.novita.ai/v3/openai"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class SILICONFLOWChat(Base):
 | |
|     def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.siliconflow.cn/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class YiChat(Base):
 | |
|     def __init__(self, key, model_name, base_url="https://api.01.ai/v1"):
 | |
|         if not base_url:
 | |
|             base_url = "https://api.01.ai/v1"
 | |
|         super().__init__(key, model_name, base_url)
 | |
| 
 | |
| 
 | |
| class ReplicateChat(Base):
 | |
|     def __init__(self, key, model_name, base_url=None):
 | |
|         from replicate.client import Client
 | |
| 
 | |
|         self.model_name = model_name
 | |
|         self.client = Client(api_token=key)
 | |
|         self.system = ""
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if "max_tokens" in gen_conf:
 | |
|             gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens")
 | |
|         if system:
 | |
|             self.system = system
 | |
|         prompt = "\n".join(
 | |
|             [item["role"] + ":" + item["content"] for item in history[-5:]]
 | |
|         )
 | |
|         ans = ""
 | |
|         try:
 | |
|             response = self.client.run(
 | |
|                 self.model_name,
 | |
|                 input={"system_prompt": self.system, "prompt": prompt, **gen_conf},
 | |
|             )
 | |
|             ans = "".join(response)
 | |
|             return ans, num_tokens_from_string(ans)
 | |
|         except Exception as e:
 | |
|             return ans + "\n**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if "max_tokens" in gen_conf:
 | |
|             gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens")
 | |
|         if system:
 | |
|             self.system = system
 | |
|         prompt = "\n".join(
 | |
|             [item["role"] + ":" + item["content"] for item in history[-5:]]
 | |
|         )
 | |
|         ans = ""
 | |
|         try:
 | |
|             response = self.client.run(
 | |
|                 self.model_name,
 | |
|                 input={"system_prompt": self.system, "prompt": prompt, **gen_conf},
 | |
|             )
 | |
|             for resp in response:
 | |
|                 ans += resp
 | |
|                 yield ans
 | |
| 
 | |
|         except Exception as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield num_tokens_from_string(ans)
 | |
| 
 | |
| 
 | |
| class HunyuanChat(Base):
 | |
|     def __init__(self, key, model_name, base_url=None):
 | |
|         from tencentcloud.common import credential
 | |
|         from tencentcloud.hunyuan.v20230901 import hunyuan_client
 | |
| 
 | |
|         key = json.loads(key)
 | |
|         sid = key.get("hunyuan_sid", "")
 | |
|         sk = key.get("hunyuan_sk", "")
 | |
|         cred = credential.Credential(sid, sk)
 | |
|         self.model_name = model_name
 | |
|         self.client = hunyuan_client.HunyuanClient(cred, "")
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         from tencentcloud.hunyuan.v20230901 import models
 | |
|         from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
 | |
|             TencentCloudSDKException,
 | |
|         )
 | |
| 
 | |
|         _gen_conf = {}
 | |
|         _history = [{k.capitalize(): v for k, v in item.items() } for item in history]
 | |
|         if system:
 | |
|             _history.insert(0, {"Role": "system", "Content": system})
 | |
|         if "temperature" in gen_conf:
 | |
|             _gen_conf["Temperature"] = gen_conf["temperature"]
 | |
|         if "top_p" in gen_conf:
 | |
|             _gen_conf["TopP"] = gen_conf["top_p"]
 | |
| 
 | |
|         req = models.ChatCompletionsRequest()
 | |
|         params = {"Model": self.model_name, "Messages": _history, **_gen_conf}
 | |
|         req.from_json_string(json.dumps(params))
 | |
|         ans = ""
 | |
|         try:
 | |
|             response = self.client.ChatCompletions(req)
 | |
|             ans = response.Choices[0].Message.Content
 | |
|             return ans, response.Usage.TotalTokens
 | |
|         except TencentCloudSDKException as e:
 | |
|             return ans + "\n**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         from tencentcloud.hunyuan.v20230901 import models
 | |
|         from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
 | |
|             TencentCloudSDKException,
 | |
|         )
 | |
| 
 | |
|         _gen_conf = {}
 | |
|         _history = [{k.capitalize(): v for k, v in item.items() } for item in history]
 | |
|         if system:
 | |
|             _history.insert(0, {"Role": "system", "Content": system})
 | |
| 
 | |
|         if "temperature" in gen_conf:
 | |
|             _gen_conf["Temperature"] = gen_conf["temperature"]
 | |
|         if "top_p" in gen_conf:
 | |
|             _gen_conf["TopP"] = gen_conf["top_p"]
 | |
|         req = models.ChatCompletionsRequest()
 | |
|         params = {
 | |
|             "Model": self.model_name,
 | |
|             "Messages": _history,
 | |
|             "Stream": True,
 | |
|             **_gen_conf,
 | |
|         }
 | |
|         req.from_json_string(json.dumps(params))
 | |
|         ans = ""
 | |
|         total_tokens = 0
 | |
|         try:
 | |
|             response = self.client.ChatCompletions(req)
 | |
|             for resp in response:
 | |
|                 resp = json.loads(resp["data"])
 | |
|                 if not resp["Choices"] or not resp["Choices"][0]["Delta"]["Content"]:
 | |
|                     continue
 | |
|                 ans += resp["Choices"][0]["Delta"]["Content"]
 | |
|                 total_tokens += 1
 | |
| 
 | |
|                 yield ans
 | |
| 
 | |
|         except TencentCloudSDKException as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield total_tokens
 | |
| 
 | |
| 
 | |
| class SparkChat(Base):
 | |
|     def __init__(
 | |
|         self, key, model_name, base_url="https://spark-api-open.xf-yun.com/v1"
 | |
|     ):
 | |
|         if not base_url:
 | |
|             base_url = "https://spark-api-open.xf-yun.com/v1"
 | |
|         model2version = {
 | |
|             "Spark-Max": "generalv3.5",
 | |
|             "Spark-Lite": "general",
 | |
|             "Spark-Pro": "generalv3",
 | |
|             "Spark-Pro-128K": "pro-128k",
 | |
|             "Spark-4.0-Ultra": "4.0Ultra",
 | |
|         }
 | |
|         model_version = model2version[model_name]
 | |
|         super().__init__(key, model_version, base_url)
 | |
| 
 | |
| 
 | |
| class BaiduYiyanChat(Base):
 | |
|     def __init__(self, key, model_name, base_url=None):
 | |
|         import qianfan
 | |
| 
 | |
|         key = json.loads(key)
 | |
|         ak = key.get("yiyan_ak","")
 | |
|         sk = key.get("yiyan_sk","")
 | |
|         self.client = qianfan.ChatCompletion(ak=ak,sk=sk)
 | |
|         self.model_name = model_name.lower()
 | |
|         self.system = ""
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             self.system = system
 | |
|         gen_conf["penalty_score"] = (
 | |
|             (gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2
 | |
|         ) + 1
 | |
|         if "max_tokens" in gen_conf:
 | |
|             gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
 | |
|         ans = ""
 | |
| 
 | |
|         try:
 | |
|             response = self.client.do(
 | |
|                 model=self.model_name, 
 | |
|                 messages=history, 
 | |
|                 system=self.system,
 | |
|                 **gen_conf
 | |
|             ).body
 | |
|             ans = response['result']
 | |
|             return ans, response["usage"]["total_tokens"]
 | |
| 
 | |
|         except Exception as e:
 | |
|             return ans + "\n**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             self.system = system
 | |
|         gen_conf["penalty_score"] = (
 | |
|             (gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2
 | |
|         ) + 1
 | |
|         if "max_tokens" in gen_conf:
 | |
|             gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
 | |
|         ans = ""
 | |
|         total_tokens = 0
 | |
| 
 | |
|         try:
 | |
|             response = self.client.do(
 | |
|                 model=self.model_name, 
 | |
|                 messages=history, 
 | |
|                 system=self.system,
 | |
|                 stream=True,
 | |
|                 **gen_conf
 | |
|             )
 | |
|             for resp in response:
 | |
|                 resp = resp.body
 | |
|                 ans += resp['result']
 | |
|                 total_tokens = resp["usage"]["total_tokens"]
 | |
| 
 | |
|                 yield ans
 | |
| 
 | |
|         except Exception as e:
 | |
|             return ans + "\n**ERROR**: " + str(e), 0
 | |
| 
 | |
|         yield total_tokens
 | |
| 
 | |
| 
 | |
| class AnthropicChat(Base):
 | |
|     def __init__(self, key, model_name, base_url=None):
 | |
|         import anthropic
 | |
| 
 | |
|         self.client = anthropic.Anthropic(api_key=key)
 | |
|         self.model_name = model_name
 | |
|         self.system = ""
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             self.system = system
 | |
|         if "max_tokens" not in gen_conf:
 | |
|             gen_conf["max_tokens"] = 4096
 | |
| 
 | |
|         try:
 | |
|             response = self.client.messages.create(
 | |
|                 model=self.model_name,
 | |
|                 messages=history,
 | |
|                 system=self.system,
 | |
|                 stream=False,
 | |
|                 **gen_conf,
 | |
|             ).json()
 | |
|             ans = response["content"][0]["text"]
 | |
|             if response["stop_reason"] == "max_tokens":
 | |
|                 ans += (
 | |
|                     "...\nFor the content length reason, it stopped, continue?"
 | |
|                     if is_english([ans])
 | |
|                     else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | |
|                 )
 | |
|             return (
 | |
|                 ans,
 | |
|                 response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
 | |
|             )
 | |
|         except Exception as e:
 | |
|             return ans + "\n**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             self.system = system
 | |
|         if "max_tokens" not in gen_conf:
 | |
|             gen_conf["max_tokens"] = 4096
 | |
| 
 | |
|         ans = ""
 | |
|         total_tokens = 0
 | |
|         try:
 | |
|             response = self.client.messages.create(
 | |
|                 model=self.model_name,
 | |
|                 messages=history,
 | |
|                 system=self.system,
 | |
|                 stream=True,
 | |
|                 **gen_conf,
 | |
|             )
 | |
|             for res in response.iter_lines():
 | |
|                 res = res.decode("utf-8")
 | |
|                 if "content_block_delta" in res and "data" in res:
 | |
|                     text = json.loads(res[6:])["delta"]["text"]
 | |
|                     ans += text
 | |
|                     total_tokens += num_tokens_from_string(text)
 | |
|         except Exception as e:
 | |
|             yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|         yield total_tokens
 | |
| 
 | |
| 
 | |
| class GoogleChat(Base):
 | |
|     def __init__(self, key, model_name, base_url=None):
 | |
|         from google.oauth2 import service_account
 | |
|         import base64
 | |
| 
 | |
|         key = json.load(key)
 | |
|         access_token = json.loads(
 | |
|             base64.b64decode(key.get("google_service_account_key", ""))
 | |
|         )
 | |
|         project_id = key.get("google_project_id", "")
 | |
|         region = key.get("google_region", "")
 | |
| 
 | |
|         scopes = ["https://www.googleapis.com/auth/cloud-platform"]
 | |
|         self.model_name = model_name
 | |
|         self.system = ""
 | |
| 
 | |
|         if "claude" in self.model_name:
 | |
|             from anthropic import AnthropicVertex
 | |
|             from google.auth.transport.requests import Request
 | |
| 
 | |
|             if access_token:
 | |
|                 credits = service_account.Credentials.from_service_account_info(
 | |
|                     access_token, scopes=scopes
 | |
|                 )
 | |
|                 request = Request()
 | |
|                 credits.refresh(request)
 | |
|                 token = credits.token
 | |
|                 self.client = AnthropicVertex(
 | |
|                     region=region, project_id=project_id, access_token=token
 | |
|                 )
 | |
|             else:
 | |
|                 self.client = AnthropicVertex(region=region, project_id=project_id)
 | |
|         else:
 | |
|             from google.cloud import aiplatform
 | |
|             import vertexai.generative_models as glm
 | |
| 
 | |
|             if access_token:
 | |
|                 credits = service_account.Credentials.from_service_account_info(
 | |
|                     access_token
 | |
|                 )
 | |
|                 aiplatform.init(
 | |
|                     credentials=credits, project=project_id, location=region
 | |
|                 )
 | |
|             else:
 | |
|                 aiplatform.init(project=project_id, location=region)
 | |
|             self.client = glm.GenerativeModel(model_name=self.model_name)
 | |
| 
 | |
|     def chat(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             self.system = system
 | |
| 
 | |
|         if "claude" in self.model_name:
 | |
|             if "max_tokens" not in gen_conf:
 | |
|                 gen_conf["max_tokens"] = 4096
 | |
|             try:
 | |
|                 response = self.client.messages.create(
 | |
|                     model=self.model_name,
 | |
|                     messages=history,
 | |
|                     system=self.system,
 | |
|                     stream=False,
 | |
|                     **gen_conf,
 | |
|                 ).json()
 | |
|                 ans = response["content"][0]["text"]
 | |
|                 if response["stop_reason"] == "max_tokens":
 | |
|                     ans += (
 | |
|                         "...\nFor the content length reason, it stopped, continue?"
 | |
|                         if is_english([ans])
 | |
|                         else "······\n由于长度的原因,回答被截断了,要继续吗?"
 | |
|                     )
 | |
|                 return (
 | |
|                     ans,
 | |
|                     response["usage"]["input_tokens"]
 | |
|                     + response["usage"]["output_tokens"],
 | |
|                 )
 | |
|             except Exception as e:
 | |
|                 return ans + "\n**ERROR**: " + str(e), 0
 | |
|         else:
 | |
|             self.client._system_instruction = self.system
 | |
|             if "max_tokens" in gen_conf:
 | |
|                 gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
 | |
|             for k in list(gen_conf.keys()):
 | |
|                 if k not in ["temperature", "top_p", "max_output_tokens"]:
 | |
|                     del gen_conf[k]
 | |
|             for item in history:
 | |
|                 if "role" in item and item["role"] == "assistant":
 | |
|                     item["role"] = "model"
 | |
|                 if "content" in item:
 | |
|                     item["parts"] = item.pop("content")
 | |
|             try:
 | |
|                 response = self.client.generate_content(
 | |
|                     history, generation_config=gen_conf
 | |
|                 )
 | |
|                 ans = response.text
 | |
|                 return ans, response.usage_metadata.total_token_count
 | |
|             except Exception as e:
 | |
|                 return "**ERROR**: " + str(e), 0
 | |
| 
 | |
|     def chat_streamly(self, system, history, gen_conf):
 | |
|         if system:
 | |
|             self.system = system
 | |
| 
 | |
|         if "claude" in self.model_name:
 | |
|             if "max_tokens" not in gen_conf:
 | |
|                 gen_conf["max_tokens"] = 4096
 | |
|             ans = ""
 | |
|             total_tokens = 0
 | |
|             try:
 | |
|                 response = self.client.messages.create(
 | |
|                     model=self.model_name,
 | |
|                     messages=history,
 | |
|                     system=self.system,
 | |
|                     stream=True,
 | |
|                     **gen_conf,
 | |
|                 )
 | |
|                 for res in response.iter_lines():
 | |
|                     res = res.decode("utf-8")
 | |
|                     if "content_block_delta" in res and "data" in res:
 | |
|                         text = json.loads(res[6:])["delta"]["text"]
 | |
|                         ans += text
 | |
|                         total_tokens += num_tokens_from_string(text)
 | |
|             except Exception as e:
 | |
|                 yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|             yield total_tokens
 | |
|         else:
 | |
|             self.client._system_instruction = self.system
 | |
|             if "max_tokens" in gen_conf:
 | |
|                 gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
 | |
|             for k in list(gen_conf.keys()):
 | |
|                 if k not in ["temperature", "top_p", "max_output_tokens"]:
 | |
|                     del gen_conf[k]
 | |
|             for item in history:
 | |
|                 if "role" in item and item["role"] == "assistant":
 | |
|                     item["role"] = "model"
 | |
|                 if "content" in item:
 | |
|                     item["parts"] = item.pop("content")
 | |
|             ans = ""
 | |
|             try:
 | |
|                 response = self.model.generate_content(
 | |
|                     history, generation_config=gen_conf, stream=True
 | |
|                 )
 | |
|                 for resp in response:
 | |
|                     ans += resp.text
 | |
|                     yield ans
 | |
| 
 | |
|             except Exception as e:
 | |
|                 yield ans + "\n**ERROR**: " + str(e)
 | |
| 
 | |
|             yield response._chunks[-1].usage_metadata.total_token_count
 |