mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-06-26 22:19:57 +00:00

### What problem does this PR solve? _Briefly describe what this PR aims to solve. Include background context that will help reviewers understand the purpose of the PR._ ### Type of change - [ ] Bug Fix (non-breaking change which fixes an issue) - [ ] New Feature (non-breaking change which adds functionality) - [ ] Documentation Update - [x] Refactoring - [ ] Performance Improvement - [ ] Other (please describe):
237 lines
11 KiB
Python
237 lines
11 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import logging
|
|
import re
|
|
from functools import partial
|
|
from agentic_reasoning.prompts import BEGIN_SEARCH_QUERY, BEGIN_SEARCH_RESULT, END_SEARCH_RESULT, MAX_SEARCH_LIMIT, \
|
|
END_SEARCH_QUERY, REASON_PROMPT, RELEVANT_EXTRACTION_PROMPT
|
|
from api.db.services.llm_service import LLMBundle
|
|
from rag.nlp import extract_between
|
|
from rag.prompts import kb_prompt
|
|
from rag.utils.tavily_conn import Tavily
|
|
|
|
|
|
class DeepResearcher:
|
|
def __init__(self,
|
|
chat_mdl: LLMBundle,
|
|
prompt_config: dict,
|
|
kb_retrieve: partial = None,
|
|
kg_retrieve: partial = None
|
|
):
|
|
self.chat_mdl = chat_mdl
|
|
self.prompt_config = prompt_config
|
|
self._kb_retrieve = kb_retrieve
|
|
self._kg_retrieve = kg_retrieve
|
|
|
|
def _remove_tags(text: str, start_tag: str, end_tag: str) -> str:
|
|
"""General Tag Removal Method"""
|
|
pattern = re.escape(start_tag) + r"(.*?)" + re.escape(end_tag)
|
|
return re.sub(pattern, "", text)
|
|
|
|
@staticmethod
|
|
def _remove_query_tags(text: str) -> str:
|
|
"""Remove Query Tags"""
|
|
return DeepResearcher._remove_tags(text, BEGIN_SEARCH_QUERY, END_SEARCH_QUERY)
|
|
|
|
@staticmethod
|
|
def _remove_result_tags(text: str) -> str:
|
|
"""Remove Result Tags"""
|
|
return DeepResearcher._remove_tags(text, BEGIN_SEARCH_RESULT, END_SEARCH_RESULT)
|
|
|
|
def _generate_reasoning(self, msg_history):
|
|
"""Generate reasoning steps"""
|
|
query_think = ""
|
|
if msg_history[-1]["role"] != "user":
|
|
msg_history.append({"role": "user", "content": "Continues reasoning with the new information.\n"})
|
|
else:
|
|
msg_history[-1]["content"] += "\n\nContinues reasoning with the new information.\n"
|
|
|
|
for ans in self.chat_mdl.chat_streamly(REASON_PROMPT, msg_history, {"temperature": 0.7}):
|
|
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
|
|
if not ans:
|
|
continue
|
|
query_think = ans
|
|
yield query_think
|
|
return query_think
|
|
|
|
def _extract_search_queries(self, query_think, question, step_index):
|
|
"""Extract search queries from thinking"""
|
|
queries = extract_between(query_think, BEGIN_SEARCH_QUERY, END_SEARCH_QUERY)
|
|
if not queries and step_index == 0:
|
|
# If this is the first step and no queries are found, use the original question as the query
|
|
queries = [question]
|
|
return queries
|
|
|
|
def _truncate_previous_reasoning(self, all_reasoning_steps):
|
|
"""Truncate previous reasoning steps to maintain a reasonable length"""
|
|
truncated_prev_reasoning = ""
|
|
for i, step in enumerate(all_reasoning_steps):
|
|
truncated_prev_reasoning += f"Step {i + 1}: {step}\n\n"
|
|
|
|
prev_steps = truncated_prev_reasoning.split('\n\n')
|
|
if len(prev_steps) <= 5:
|
|
truncated_prev_reasoning = '\n\n'.join(prev_steps)
|
|
else:
|
|
truncated_prev_reasoning = ''
|
|
for i, step in enumerate(prev_steps):
|
|
if i == 0 or i >= len(prev_steps) - 4 or BEGIN_SEARCH_QUERY in step or BEGIN_SEARCH_RESULT in step:
|
|
truncated_prev_reasoning += step + '\n\n'
|
|
else:
|
|
if truncated_prev_reasoning[-len('\n\n...\n\n'):] != '\n\n...\n\n':
|
|
truncated_prev_reasoning += '...\n\n'
|
|
|
|
return truncated_prev_reasoning.strip('\n')
|
|
|
|
def _retrieve_information(self, search_query):
|
|
"""Retrieve information from different sources"""
|
|
# 1. Knowledge base retrieval
|
|
kbinfos = []
|
|
try:
|
|
kbinfos = self._kb_retrieve(question=search_query) if self._kb_retrieve else {"chunks": [], "doc_aggs": []}
|
|
except Exception as e:
|
|
logging.error(f"Knowledge base retrieval error: {e}")
|
|
|
|
# 2. Web retrieval (if Tavily API is configured)
|
|
try:
|
|
if self.prompt_config.get("tavily_api_key"):
|
|
tav = Tavily(self.prompt_config["tavily_api_key"])
|
|
tav_res = tav.retrieve_chunks(search_query)
|
|
kbinfos["chunks"].extend(tav_res["chunks"])
|
|
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
|
|
except Exception as e:
|
|
logging.error(f"Web retrieval error: {e}")
|
|
|
|
# 3. Knowledge graph retrieval (if configured)
|
|
try:
|
|
if self.prompt_config.get("use_kg") and self._kg_retrieve:
|
|
ck = self._kg_retrieve(question=search_query)
|
|
if ck["content_with_weight"]:
|
|
kbinfos["chunks"].insert(0, ck)
|
|
except Exception as e:
|
|
logging.error(f"Knowledge graph retrieval error: {e}")
|
|
|
|
return kbinfos
|
|
|
|
def _update_chunk_info(self, chunk_info, kbinfos):
|
|
"""Update chunk information for citations"""
|
|
if not chunk_info["chunks"]:
|
|
# If this is the first retrieval, use the retrieval results directly
|
|
for k in chunk_info.keys():
|
|
chunk_info[k] = kbinfos[k]
|
|
else:
|
|
# Merge newly retrieved information, avoiding duplicates
|
|
cids = [c["chunk_id"] for c in chunk_info["chunks"]]
|
|
for c in kbinfos["chunks"]:
|
|
if c["chunk_id"] not in cids:
|
|
chunk_info["chunks"].append(c)
|
|
|
|
dids = [d["doc_id"] for d in chunk_info["doc_aggs"]]
|
|
for d in kbinfos["doc_aggs"]:
|
|
if d["doc_id"] not in dids:
|
|
chunk_info["doc_aggs"].append(d)
|
|
|
|
def _extract_relevant_info(self, truncated_prev_reasoning, search_query, kbinfos):
|
|
"""Extract and summarize relevant information"""
|
|
summary_think = ""
|
|
for ans in self.chat_mdl.chat_streamly(
|
|
RELEVANT_EXTRACTION_PROMPT.format(
|
|
prev_reasoning=truncated_prev_reasoning,
|
|
search_query=search_query,
|
|
document="\n".join(kb_prompt(kbinfos, 4096))
|
|
),
|
|
[{"role": "user",
|
|
"content": f'Now you should analyze each web page and find helpful information based on the current search query "{search_query}" and previous reasoning steps.'}],
|
|
{"temperature": 0.7}):
|
|
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
|
|
if not ans:
|
|
continue
|
|
summary_think = ans
|
|
yield summary_think
|
|
|
|
return summary_think
|
|
|
|
def thinking(self, chunk_info: dict, question: str):
|
|
executed_search_queries = []
|
|
msg_history = [{"role": "user", "content": f'Question:\"{question}\"\n'}]
|
|
all_reasoning_steps = []
|
|
think = "<think>"
|
|
|
|
for step_index in range(MAX_SEARCH_LIMIT + 1):
|
|
# Check if the maximum search limit has been reached
|
|
if step_index == MAX_SEARCH_LIMIT - 1:
|
|
summary_think = f"\n{BEGIN_SEARCH_RESULT}\nThe maximum search limit is exceeded. You are not allowed to search.\n{END_SEARCH_RESULT}\n"
|
|
yield {"answer": think + summary_think + "</think>", "reference": {}, "audio_binary": None}
|
|
all_reasoning_steps.append(summary_think)
|
|
msg_history.append({"role": "assistant", "content": summary_think})
|
|
break
|
|
|
|
# Step 1: Generate reasoning
|
|
query_think = ""
|
|
for ans in self._generate_reasoning(msg_history):
|
|
query_think = ans
|
|
yield {"answer": think + self._remove_query_tags(query_think) + "</think>", "reference": {}, "audio_binary": None}
|
|
|
|
think += self._remove_query_tags(query_think)
|
|
all_reasoning_steps.append(query_think)
|
|
|
|
# Step 2: Extract search queries
|
|
queries = self._extract_search_queries(query_think, question, step_index)
|
|
if not queries and step_index > 0:
|
|
# If not the first step and no queries, end the search process
|
|
break
|
|
|
|
# Process each search query
|
|
for search_query in queries:
|
|
logging.info(f"[THINK]Query: {step_index}. {search_query}")
|
|
msg_history.append({"role": "assistant", "content": search_query})
|
|
think += f"\n\n> {step_index + 1}. {search_query}\n\n"
|
|
yield {"answer": think + "</think>", "reference": {}, "audio_binary": None}
|
|
|
|
# Check if the query has already been executed
|
|
if search_query in executed_search_queries:
|
|
summary_think = f"\n{BEGIN_SEARCH_RESULT}\nYou have searched this query. Please refer to previous results.\n{END_SEARCH_RESULT}\n"
|
|
yield {"answer": think + summary_think + "</think>", "reference": {}, "audio_binary": None}
|
|
all_reasoning_steps.append(summary_think)
|
|
msg_history.append({"role": "user", "content": summary_think})
|
|
think += summary_think
|
|
continue
|
|
|
|
executed_search_queries.append(search_query)
|
|
|
|
# Step 3: Truncate previous reasoning steps
|
|
truncated_prev_reasoning = self._truncate_previous_reasoning(all_reasoning_steps)
|
|
|
|
# Step 4: Retrieve information
|
|
kbinfos = self._retrieve_information(search_query)
|
|
|
|
# Step 5: Update chunk information
|
|
self._update_chunk_info(chunk_info, kbinfos)
|
|
|
|
# Step 6: Extract relevant information
|
|
think += "\n\n"
|
|
summary_think = ""
|
|
for ans in self._extract_relevant_info(truncated_prev_reasoning, search_query, kbinfos):
|
|
summary_think = ans
|
|
yield {"answer": think + self._remove_result_tags(summary_think) + "</think>", "reference": {}, "audio_binary": None}
|
|
|
|
all_reasoning_steps.append(summary_think)
|
|
msg_history.append(
|
|
{"role": "user", "content": f"\n\n{BEGIN_SEARCH_RESULT}{summary_think}{END_SEARCH_RESULT}\n\n"})
|
|
think += self._remove_result_tags(summary_think)
|
|
logging.info(f"[THINK]Summary: {step_index}. {summary_think}")
|
|
|
|
yield think + "</think>"
|